

JavaScript
The Definitive Guide

Firth Edition

David Flanagan

JavaScript
Ətraflı izah

Beşinci buraxılış

Abbas Məcidov
(tərcüməçi və təşkilatçı)

Bakı – Gəncə
2015 - 2016

Mündəricat

Fəsil	1.	JavaScript-ə	giriş

1.1. JavaScript nədir
1.2. JavaScript kliyenti

1.3. JavaScript-in başqa sahələrdə istifadəsi

1.4. JavaScript öyrənilməsi

Fəsil	2.	Leksik	struktur

2.1. Simvol yığımı
2.2. Registrə həssaslıq

2.3. Simvol-ayırıcılar və sətir keçidləri

2.4. Vacib olmayan nöqtəli vergüllər
2.5. Şərhlər

2.6. Literallar

2.7. I�denti�ikatorlar
2.8. Ehtiyata saxlanılan sözlər

Fəsil	3.	Məlumat	tipləri	və	qiymətlər

3.1. Ədədlər

3.2. Sətirlər
3.3. Məntiqi qiymətlər

3.4. Funksiyalar

3.5. Obyektlər
3.6. Massivlər

3.7. null qiyməti

3.8. unde�ined qiyməti
3.9. Date obyekti

3.10. Requlyar ifadələr

3.11. Error obyektləri
3.12. Tiplərin dəyişikliyi

3.13. Elementarlar məlumat tipləri üçün obyekt-üzlüklər

3.14. Obyektlərin elementar tiplərdə olan qiymətlərə dəyişikliyi
3.15. Qiymət və ya istinad üzrə

Fəsil	4.	Dəyişənlər

4.1. Dəyişənlərin tipləşdirməsi

4.2. Dəyişənlərin elan edilməsi
4.3. Dəyişənin görünmə sahəsi

4.4. Elementar və sitat tipləri

4.5. Tullantılar dəsti
4.6. Xüsusiyyət rolunda olan dəyişənlər

Fəsil	5.	İfadələr	və	operatorlar
5.1. I�fadələr

5.2. Operatorların icmalı

5.3. Hesab operatorları
5.4. Bərabərlik operatorları

5.5. Əlaqə operatorları
5.6. Sətir operatorları

5.7. Məntiqi operatorlar

5.8. Bit-təyinatlı operatorlar
5.9. Mənimsəmə operatorları

5.10. Digər operatorlar

Fəsil	6.	Təlimatlar

6.1. Təlimat – ifadə

6.2. Tərkib təlimatlar
6.3. if təlimatı

6.4. else if təlimatı

6.5. switch təlimatı
6.6. while təlimatı

6.7. do/while dövrü

6.8. for təlimatı
6.9. for/in təlimatı

6.10. Nişanlar

6.11. break təlimatı
6.12. continue təlimatı

6.13. var təlimatı

6.14. function təlimatı
6.15. return təlimatı

6.16. throw təlimatı
6.17. try/catch/�inally təlimatı

6.18.with təlimatı

6.19. Boş təlimat

Fəsil	7.	Obyektlər
7.1. Obyektlərin yaradılması

7.2. Obyektlərin xüsusiyyətləri

7.3. Obyektler assosiativ massivlər qismində
7.4. Universal Object sini�inin xüsusiyyətləri və metodları

7.5. Massivlər

7.6. Massivin elementlərinin oxunması və yazılması
7.7 Massiv metodları

Fəsil	8.	Funksiyalar

8.1. Funksiyaların təyini və çağrılması

8.2. Funksiyaların arqumentləri
8.3. Məlumat qismində funksiyalar

8.4. Metodlar qismində funksiyalar
8.5. Funksiya-konstruktoru

8.6. Funksiyaların xüsusiyyətləri və metodları

8.7. Funksiyaların praktik nümunələri
8.8. Funksiyaların və qapanmanın görünmə sahəsi

8.9. Function() konstruktoru

Fəsil	9.	Sini�lər,	konstruktorlar	və	prototiplər

9.1. Konstruklar

9.2. Prototiplər və varislik
9.3. Obyekt yönümlü proqramlaşdırma

9.4. Object sini�inin ümumi metodları

9.4.3. Müqayisə metodları
9.5. U� st və altsini�lər

9.6. Varislik olmadan genişlənmə

9.7. Obyektin tipinin təyini

1
JavaScript-ə giriş

JavaScript – obyektyönümlü proqramlaşdırma imkanları olan
interprerativ proqramlaşdırma dilidir. Sintaksis nöqteyi-
nəzərindən JavaScript-in baza dili C, C++ və Java PD-lərinin
proqram konstruksiyalarına bənzəyir (məs.: if, while və &&
operatort). Ancaq bu oxşarlıq yalnız sintaktis

Şəkil	1.1.	JavaScript-in	qeyri-rəsmi	loqotipi
oxşarlıqilə məhdudlaşır.
JavaScript –tipləşdirilməmiş dildir , yəni bu dildə dəyişənlərin
tiplərini müəyyən etmək tələb olunur. JavaScript-də obyektlər, ad
xüsusiyyətlərində sərbəst qiymətləri əks etdirir. Bu xüsusiyyətinə görə Perl PD-
sinin assosiativ massivlərini, C strukturlarını və ya C++ və ya Java obyektlərini
xatırladırlar. JavaScript dilinin nüvəsi sadə məlumat tipləri, ədədlər, sətirlər və
Bull qiymətlərini dəstəkləyir.
Bundan başqa bu dil massivlər, tarixlərin və müntəzəm ifadə obyektlərinin
inteqrasiya edilmiş dəstinə malikdir. Adətən JavaScript veb-brauzerlərdə tətbiq
edilir. Obyektlərin tətbiqi nəticəsində bu dilin imkanları daha genişdir.
JavaScript, istifadəçi ilə qarşılıqlı təsiri təşkil etməyə, veb-brauzeri idarə etməyə
və veb-brauzerin pəncərəsinin daxilində əks etdirilən sənədin tərkibini
dəyişdirməyə imkan verir. JavaScript veb səhifələrin HTML-koduna tətbiq
edilmiş ssenarilər vasitəsilə inteqrasiya edir. Bir qayda olaraq, bu versiya
JavaScript-in kliyent dili adlanır. Qeyd etmək lazımdır ki, ssenari kliyenti veb-
serverdə deyil, kompüterinizdə (o�layn rejimdə) icra edilir. JavaScript və bu dilin
dəstəklədiyi məlumat tipləri dili beynəlxalq standartlara əsaslanır. Bunun
sayəsində reallaşdırmalar arasında çox gözəl uyğunluq yaranır.
Bunun sayəsində reallaşdırmalar arasında çox gözəl uyğunluq yaranır.
JavaScript-kliyentinin bəzi hissələri rəsmi standart, bəzi hissələri hissələr de-
fakto standartdır, amma kliyentin elə hissələri də var ki, brauzerin konkret
versiyasına uyğun spesi�ik genişlənmədir. Müxtəlif brauzerlərdə JavaScript
reallaşdırmalarının uyğunluğu JavaScript-in kliyent dilindən istifadə edən
proqramçıları tez-tez düşündürür və narahat edir. Bu fəsildə dilin imkanlarının
faktiki öyrənməsinə keçməzdən əvvəl JavaScript-in qısa icmalı və giriş
informasiyası verilir.

Bundan başqa, praktik veb-proqramlaşdırma JavaScript-in kliyent dilində bir
neçə kod fraqmenti bu fəsildə nümayiş etdirilir.

1.1. JavaScript nədir
JavaScript-in haqqında çoxlu dezinformasiyalar və qarışıq məlumatlar
mövcuddur. JavaScript-in öyrənilməsindən əvvəl, bu dillə bağlı yayılmış bəzi
mi�ik məlumatları aydınlaşdıraq.

1.1.1. JavaScript – Java deyil
JavaScript haqqında ən geniş yayılmış yanlış �ikirlərdən biri ondan ibarətdir ki,
guya bu dil Sun Microsystems şirkəti tərə�indən hazırlanmış Java
proqramlaşdırma dilinin sadələşdirilmiş versiyasıdır. Bəzi sintaktis oxşarlıq və
veb-brauzerə icra edilə bilən tərkib mənimsətmək qabiliyyətindən savayı, bu iki
dil arasında heç bir bağlılıq yoxdur. Adlarının oxşarlığına gəlincə isə, bu sadəcə
marketinq siyasətinin nəticəsidir (dilin ilkin adı LiveScript olmuşdur, sonralar
isə bu dil JavaScript adlandırdırıldı). Ancaq JavaScript və Java bir-birinə qarşılıqlı
təsir edə bilər.

1.1.2. JavaScript sadə dil deyil
Bir halda ki, JavaScript izah edilən dildir və bu dil adətən proqramlaşdırma dili
kimi deyil ssenarilər şəklində yerləşdirilir, bu halda nəzərə almaq lazımdır ki,
ssenari dilləri təkcə, çox mürəkkəb şəraitdə işləməyi bacaran proqramçıdan
tutmuş, elementar proqramlaşdırma bilikləri olan proqramçı üçün
yönəlməmişdir, hətta bu dil adi istifadəçi üçün də nəzərdə tutulmuşdur. Əslində,
JavaScript tipləşdirilməmiş xüsusiyyəti sayəsində, təcrübəsiz proqramçılar
tərə�indən tiplərin təyini zamanı buraxılan səhvləri güzəştə gedir. Buna görə də
əksər veb-dizaynerlər dəqiq reseptlər üzrə yerinə yetirilən məsələlərin
məhdudlaşmış əhatədə həlli üçün JavaScript-dən istifadə edir. Ancaq JavaScript-
in zahiri sadəliyi baxmayaraq, daxilində bir o qədər də mürəkkəb və dəyərli
proqramlaşdırma dili gizlənir. JavaScript imkanlarını tam anlamadan bu dilin
köməyilə qeyri-adi məsələləri həll etməyə çalışan proqramçılar hazırlanma
prosesində tez-tez məyus olurlar. Bu kitabda, JavaScript-in hərtərə�li təsviri
verilmişdir. Əgər bu kitabdan əvvəl hazır məzmunu ehtiva edən JavaScript
məlumat kitabçalarından istifadə etmisinizsə, bu kitabdakı fəsillərinin dərinliyi
və ifadə təfərrüatı yəqin ki, sizi təəccübləndirəcək.

1.2. JavaScript kliyen�

JavaScript interpretatoru veb-brauzerə JavaScript kliyenti vasitəsilə inteqrasiya
edir. Elə buna görə də, JavaScript dedikdə, insanların ağlına ilk öncə JavaScript
kliyenti gəlir. Bu kitabda JavaScript-in kliyent dili bu dilin alt çoxluğunu təşkil
edən JavaScript-bazası ilə birlikdə təsvir edilir.
JavaScript kliyentinin daxilində JavaScript interpretatorunu və obyektiveb-
brauzerlə müəyyən edilən sənədin obyekt modeli (Document	 Object	 Model,
DOM) yerləşir.
Sənədlər JavaScript-ssenariləri özündə saxlaya bilər. Bu ssenarilər, öz növbəsində
DOM modelindən istifadə edərək, sənədin və ya idarə etmənin üsulunun
modi�ikasiyası üçün istifadə edilir. Başqa sözlə demək olar ki, JavaScript kliyenti
veb səhifələrin statik tərkibin davranışını müəyyən etməyə imkan verir.
JavaScript kliyenti veb-proqramların hazırlamasının texnologiyalarının əsasıdır,
DHTML (16-cı fəsil), AJAX (20-ci fəsil) arxitekturaların). ECMA-262
spesi�ikasiyası JavaScript-in baza dilinin standart versiyasını müəyyən edir və
World Wide Web Consortium (W3C) təşkilatı tərə�indən standartlaşdıran DOM
spesi�ikasiyasını hazırlamışdır hansı ki, brauzer bu standartı öz obyekt
modelində dəstəkləməlidir. W3C DOM standartı ən məşhur brauzerlərlə tam
dəstəklənir. Yalnız – Microsoft Internet Explorer tərə�indən dəstəklənmir; bu
brauzerdə hadisələrin emalı mexanizminin dəstəyi yoxdur.

1.2.1. JavaScript kliyen�ndən is�fadə nümunələri

JavaScript interpretatoru ilə təchiz edilmiş veb-brauzer I�nternet vasitəsilə
JavaScript-ssenarilər şəklində icra edilən tərkibi göstərə bilir. Nümunə 1.1-də
JavaScript dilində veb-səhidəyə inteqrasiya edilmiş sadə proqram
göstərilmişdir.
Nümunə1.1.JavaScriptdilindəsadəproqram

<html>
<head>

<meta charset = "utf-8">
<title>Faktoriallar</title>

</head>
<body>

<h2>Faktorial cədvəli</h2>
<script>
var fact = 1;
for(i = 1; i < 16; i++) {

fact = fact*i;
document.write(i + "! = " + fact + "
");

}
</script>

</body>
</html>

Şəkil	1.2. JavaScript-də	faktorial	siyahısı	alqoritmi

Sözügedən proqram JavaScript-i dəstəkləyən brauzer vasitəsilə icra edildikdə,
şəkildəki nəticəni verəcək.
Bu nümunədən göründüyü kimi, JavaScript-kodunun HTML-faylına
yerləşdirilməsi üçün <script> və </script> teqlərindən istifadə edilmişdir.
Burada əsas – document.write() metodundan istifadə edilir. Bu metod,
sənədin veb-brauzerlə yükləməsi anında HTML-sənədin daxilində dinamik
HTML-mətn istehsal etməyə imkan verir.
JavaScript yalnız HTML-sənədin tərkibini deyil, həm də onların davranışının
idarəetməsini təmin edir. Başqa sözlə, JavaScript-proqram istifadəçisinin
hərəkətlərinə reaksiya verə bilər (məs.: mətn sahəsinə qiymətin daxil edilməsi
və ya sənəddə təsvir sahəsində siçandan icra olunan çıqqıltıya cavab). Bu sənəd
üçün hadisələrin emalçılarının təyini yolu ilə əldə edilir. Məsələn, müəyyən
hadisənin yaranması anında icra edilən JavaScript-kodlarını nümunə göstərmək
olar. Nümunə	1.2-də HTML-kodun sadə fraqmenti göstərilmişdir. Burada emalçı
çıqqıltıya cavab olaraq müəyyən hadisəni (burada xəbərdarlıq) icra edir.

Nümunə1.2.	JavaScript	dilində	hadisə	emalçısı	vasitəsilə	HTML-düymə
<button onclick="alert('Düyməyə çıqqıltı qeydə alınmışdır');">Bura kliklə</button>

Şəkil	1.3.	JavaScript-də	hadisə	emalçısı

Şəkil 1.3-də düyməyə çıqqıltının nəticəsi göstərilmişdir. Nümunə 1.2-dəki onclick
atributu – icra edilən JavaScript-kodunun sətridir. Göründüyü kimi bu atribut
klikləməyə cavab verir. Bu nümunədə onclick hadisəsinin emalçısı alert()
funksiyasına səbəb olur. Şəkildən görün-düyü kimi.
Nümunə	 1.2-dəki, alert() funksiyası göstərilən mesajla birlikdə dialoq
pəncərəsini vasitəsilə təsvir edilir. 1.1. və 1.2. nümunələri JavaScript kliyentinin
ən sadə imkanlarıdır. Bu dilin real gücü ondan ibarətdir ki, ssenarilər HTML-
sənədin tərkibində yerləşir.

1.3. JavaScript-in başqa sahələrdə is�fadəsi
JavaScript – ümumi təyinatlı proqramlaşdırma dilidir və onun istifadəsi tək veb-
brauzerlər ilə məhdudlaşmır. Əvvəllər JavaScript, istənilən proqrama ssenarilər
ilə yerləşdirilir və icra edilir. I�lk günlərdən Netscape şirkətinin veb-serverləri
JavaScript ssenarilərini icra etməyi bacaran JavaScript interpretatoru
dəstəkləyirdi. Oxşar üsulla Microsoft korporasiyası Internet Explorer-ə əlavə
olaraq öz veb serverlərində IIS və Windows Scripting Host məhsulu üçün JScript
interpretatoru istifadə edir. Adobe şirkəti öz Flash- fayllarının oxuyucusunun
idarə etməsi üçün JavaScript-dən törəyən dili cəlb etdi. Həmçinin Sun şirkəti Java
6.0 distributivinə JavaScript interpretatoru quraşdırdı və bunun sayəsində
istənilən Java-proqramına ssenarilərin yerləşdirilməsi imkanı əhəmiyyətli
dərəcədə yüngülləşdi.
Netscape və Microsoft öz JavaScript interpretatorlarının reallaşdırmalarını, öz
proqramlarını əlavə etmək istəyən şirkətlər və proqramçılar üçün əlçatan etdi.

Netscape şirkəti tərə�indən yaradılmış interpretator açıq mənbəli və azad
yayılan PT olub, hal-hazırda Mozilla
(http://www.mozilla.org/js/) təşkilatı vasitəsilə yayılır. Mozilla faktiki olaraq
JavaScript 1.5 interpretatorunin iki müxtəlif versiyasını yayır: biri C dilində
yazılmışdır və SpiderMonkey adlanır, o biri isə Java dilində yazılmışdır və kitabın
müəlli�inin �ikrincə çox təkmil şəkildə hazırlanmış və Rhino (kərgədan) adı
verilmiş interpretatordur.

1.4. JavaScript öyrənilməsi
I�stənilən yeni proqramlaşdırma dilinin metodikası zamanı praktikadan istifadə
etmək lazımdır. Bu kitabı oxuduğunuzda, sizə JavaScript imkanlarını yoxlamağı
məsləhət görürəm. Məsələn, sadə funksiyalardan ibarət kodlardan başlaya
bilərsiniz. Proqram kodunu oxumağa və anlamağa çalışın. JavaScript
öyrənilməsinə ən aşkar yanaşma – sadə ssenarilərin yazılışıdır. JavaScript
kliyentinin üstünlüklərindən biri ondan ibarətdir ki, işləmə mühiti hər hansı,
veb-brauzer və ən sadə mətn redaktoru ilə qurulmuşdur. JavaScript-də
proqramlar yazmaq üçün, xüsusi proqram təminatının yüklənməsinə ehtiyac
yoxdur. Məsələn, fatorialların yerinə Fibonaççi	 ədədlərinin ardıcıllığını
göstərmək üçün, aşağıdakı nümunə 1.1 kopyalamaq olar:

<script>
document.write("<h2>Fibonaççi ədədləri</h2>");
for(i=0, j=1, k=0, fib =0; i<50; i++, fib=j+k, j=k, k=fib){

document.write("Fibonacci ("+i+") ="+ fib);
document.write("</br>");

}
</script>

Bu kod sizə qəliz görünə bilər (əgər kodu anlaya bilmədizsə, narahat olmayın),
amma belə qısa proqramlarla təcrübə etmək üçün, kodu olduğu kimi kopyalamaq
və lokal URL-ünvanlı fayl kimi veb- brauzerdə onu icra etmək kifayətdir. Nəzərə
alın ki, hesablamaların nəticəsini göstərmək üçün document.write()
metodundan istifadə olunur. Bu metoddan istifadə, JavaScript ilə tanışlıq zamanı
faydalıdır. Alternativ olaraq dialoq pəncərəsində sadə mətn nəticəsini göstərmək
üçün alert() metodunu tətbiq etmək olar:

alert("Fibonaççi(" + i + ") = " + fib);

Qeyd edək ki, JavaScript ilə belə sadə sınaq kodlarını HTML faylın daxilində
<html>, <head> və <body> teqlərinin içərisində yerləşdirmək olar.
JavaScript ilə sınaqların daha da sadələşdirməsi üçün URL-ünvana mənimsədilə
bilən javascript: psevdoprotokol spesi�ikatoru yaradılmışdır. Bu üsul ayəsində

http://www.mozilla.org/js/
https://az.wikipedia.org/wiki/Fibona%C3%A7%C3%A7i_%C9%99d%C9%99dl%C9%99ri

JavaScript-də ifadənin və qiymətin nəticənin hesablamaq olar. Belə URL-ünvan
psevdoprotokol spesi�ikatorundan (javascript:) ibarətdir, hansı ki, burada
sərbəst olaraq JavaScript-kodu (təlimatlar biri-birindən nöqtəli vergül ilə ayrılır)
göstərilir. URL-ünvanı psevdoprotokol vasitəsilə yükləndikdə, brauzer sadəcə
JavaScriptkodunu icra edir. Belə URL- ünvanda ifadənin son qiyməti sətir tipinə
dəyişdiriləcək və bu sətir yeni sənəd kimi veb-brauzer vasitəsilə göstəriləcək.
Məsələn, bəzi operatorların və JavaScript dilinin təlimatlarını yoxlamaq üçün,
veb-brauzerin ünvan sahəsində aşağıdakı URL-ünvanları yığmaq olar:

javascript:5%2
javascript:x = 3; (x<5) ? "x qiyməti kiçikdir": "x qiyməti daha böyükdür"
javascript:d = new Date(); typeof d; javascript:for (i=0, j=1, k=0, fib=1; i<5;
i++, fib=j +k, k=j, j=fib) alert(fib); javascript:s=""; for (i in navigator)
s+=i+":" +navigator[i] +" \n"; alert(s);

Firefox təksətirli veb- brauzerində ssenarilər JavaScript-konsollarını ehtiva edir.
Bu konsolu Alətlər menyusundan işə salmaq olar. Burada sadəcə yoxlamaq
istədiyiniz ifadəni və ya təlimatı daxil etmək lazımdır. JavaScript- konsoldan
istifadə zamanı psevdoprotokol spesi�ikatorunu (javascript:) işə salmaq olar.
JavaScript- kodun öyrənilməsinin baza metodikası, başqa dillərin metodikası ilə
uyğun gəlir.
Əgər siz JavaScript- ssenarilərində tez-tez xətalarla rastlaşırsınızsa, ehtimal ki,
JavaScript-in cari sazlayıcısı ilə maraqlanacaqsınız. Internet Explorer-də
Microsoft Script Debugger, Firefox-da Venkman adlı məlum genişlənmənin
modul sazlayıcısından istifadə etmək olar. Bu alətlərin təsviri kitabın əhatə
mövzundan kənar olmasına baxmayaraq, siz asanlıqla I�nternetdə, hər hansı bir
axtarış sistemindən istifadə edib bu barədə məlumat toplaya bilərsiniz. Daha bir
alət jslint-dir. Ciddi desək bu sazlayıcı deyil; Bu alət JavaScript-proqram kodunda
olan xətaları axtarmağa yönəlmişdir (http://jslint.com).

http://jslint.com/

2
Leksik struktur

Proqramlaşdırma dilinin leksik strukturu – proqramların yazılma qaydalarını
müəyyən elementarların dəstidir. Dilin aşağı səviyyəli sintaksisi; dəyişənlərin
adları, şərhlər üçün istifadə edilən simvollar, bir təlimatı digərindən ayırmaq və
s-dir. Bu qısa fəsil JavaScript-in leksik strukturunu sənədlərlə əsaslandırır.

2.1. Simvol yığımı
JavaScript-də proqramların yazılışı zamanı Unicode simvol yığımından istifadə
olunur. Yalnız ingilis dili üçün ASCII-yə və ISO Latin-1-ə yaxın kodlaşdırmadan və
əsas qərbi avropa dillərinin 8-dərəcəli kodlaşdırmasının 7- dərəcəli
kodlaşdırmasından fərqli olaraq, Unicode-un 16-dərəcəli kodlaşdırması praktik
olaraq istənilən yazı dilinin tətbiqini təmin edir. Bu imkan beynəlmiləlləşdirmə
üçün və xüsusilə "ingilis olmayan" proqramçılar üçün əhəmiyyətlidir.
Amerikanlar və digər ingilis dilində danışan proqramçılar proqramları, adətən
yalnız ASCII və ya Latin-1 kodlaşdırmasını dəstəkləyən mətn redaktorunun
köməyi ilə yazırlar və buna görə onlarda Unicode tam simvolların dəsti əlçatan
deyil. Ancaq əks tərə�in bu barədə heç bir çətinliyi, bir halda ki, çünki ASCII və
Latin-1 kodlaşdırmaları Unicode kodlaşdırmasının alt çoxluqlarını təşkil edir və
hər hansı bir simvol dəstinin köməyi ilə yazılmış JavaScript-proqramı tamamilə
düzgündür. ECMAScript v3 standartı JavaScript-proqramlarında istənilən yerdə
Unicode-simvolların mövcudluğuna imkan edir.

2.2. Registrə həssaslıq
JavaScript – registrə həssas dildir. Bu isə o deməkdir ki, əsas sözlər, dəyişənlər,
funksiya adları və dilin ixtiyari bir identi�ikatoru həmişə böyük və kiçik hər�lərin
eyni cür yığımını ehtiva etməlidir. Məsələn, while açar sözü "While" və ya
"WHILE" kimi deyil "while" kimi yazılmalıdır. Online, Online, OnLine və ONLINE –
bu dörd müxtəli�in dəyişən adları da analojidir. Qeyd edək, HTML dili, JavaScript-
dən fərqli olaraq, registrə həssas deyil. HTML-in və JavaScript-kliyentinin yaxın
əlaqəsini nəzərə alaraq bu fərq qarışıqlığa gətirib çıxara bilər. Nəzərə alın ki,
JavaScript- obyektləri və onların xüsusiyyətləri ilə HTML dilinin teq və

atributları eynidir. Əgər HTML-dilində bu teqlər və atributlar istənilən registrdə
yazıla bildiyi halda, JavaScript-də adətən kiçik hər�lərlə yazılmalıdır. Məsələn,
HTML-də onclick hadisəsinin emalçısının atributu əksər hallarda onClick kimi,
ancaq JavaScriptkodunda (və ya XHTML-sənədində) onclick kimi göstərilməlidir.

2.3. Simvol-ayırıcılar və sə�r keçidləri
JavaScript – proqramın daxilində leksemləri arasında boşluqlara, tabulyasiyalara
və sətir keçidlərinə məhəlqoymur. Buna görə də boşluq, tabulyasiya və yeni sətir
simvolları proqram mətnində xüsusi simvolların köməyilə məhdudiyyətsiz
istifadə edilə bilər. Ancaq bu barədə, növbəti bölmədə danışacağıq.

2.4. Vacib olmayan nöqtəli vergüllər
Sadə JavaScript-də təlimatları C, C++, və Java PD-ləri kimi adətən nöqtəli vergül
(;) simvolları ilə qurtarır. Nöqtəli vergül təlimatlar bir-birindən ayırmasına
xidmət edir. Ancaq JavaScript-də əgər hər təlimat ayrı sətirdə yerləşirsə, nöqtəli
vergülü qoymamaq olar. Məsələn, aşağıdakı fraqment nöqtəli vergüllərsiz ola
bilər:

a = 3;
b = 4;

Ancaq əgər hər iki təlimat bir sətirdə yerləşdirilmişsə, onda məcburi olaraq
nöqtəli vergül qoyulmalıdır:

a = 3; b = 4;

Proqramlaşdırmada nöqtəli vergüllərin qoyulma kriteriyalarını düzgün anlamaq
çətindir və buna görə istənilən məqamda nöqtəli vergüllərdən istifadə etməyi
özünüzə vərdiş edin. Nəzəri alın ki, JavaScript, istənilən iki leksem arasında sətir
boşluğu güman edir, amma JavaScript-in sintaktis analizatorunun avtomatik
nöqtəli vergülləri qoyma vərdişinin bəzi istisnaları mövcuddur. Əgər proqram
kodunun sətirində bitirilmiş təlimatdan sonar yeni sətirə keçilibsə, JavaScript-in
sintaktis analizatoru nöqtəli vergülü avtomatik qoyur. Məsələn, aşağıdakı
fraqmentə baxaq:

return
true;

JavaScript-in sintaktis analizatoru güman edir ki, proqramçının yazdığı kod
aşağıdakı kimidir:

return;
true;

Hərçənd ki əslində proqramçı, return true; yazmaq istəyirdi. Gördüyünüz kimi,
diqqətli olmaq lazımdır – bu kod sintaktis cəhətdən səhv deyil, amma kodda
aşkar olmayan nasazlığı mövcuddur. Oxşar xoşagəlməz hadisə: break outerloop;
yazanda da yarana bilər.
JavaScript break açar sözündən sonra nöqtəli vergülü avtomatik qoyur və
növbəti sətiri icra edildikdə xəta ilə üzləşir. Analoji səbəblərə görə post�iks
operatorlarını (++ və --) (5-ci	 fəsilə baxmaq), aid olduğu ifadənin sətirində
yerləşdirmək məcburidir.

2.5. Şərhlər
JavaScript, həmçinin Java və C++, C stilində olan şərhləri dəstəkləyir. Sətir
sonunda // simvolları arasında daxil edilən istənilən mətnə, şərh kimi baxılır.
Şərhlərin icraedici funksiyası yoxdur. Həmçinin / * və */ simvolları arasında
daxil edilən istənilən mətnə şərh kimi baxılır. C stilində sözügedən şərhlər bir
neçə sətirdən ibarət ola bilər və qoyulmuş ola bilmir. Aşağıdakı kod sətirlərində
düzgün JavaScript-şərhləri göstərilmişdir:

// Bu təksətirli şərhdir.
/* Bu da həmçinin şərhdir */ // və bu başqa cür şərh formasıdır.
/*
*Bu da daha bir şərh formasıdır.
*Bu formada olan şərhlər bir neçə sətirdə yerləşdirilə bilər.
*/

2.6. Literallar
Literal – proqramın mətnində bilavasitə göstərilmiş qiymətdir. Aşağıda bəzi
literal nümunələri göstərilmişdir:

12 // On iki ədədi
1.2 // Bir tam onda iki onluq ədədi
"hello world" // Mətn sətiri
'Hi' // Başqa cür sətir true
true // Məntiqi qiymət
false // Digər bir məntiqi qiymət
/javascript/gi // Requlyar ifadə (şablon üzrə axtarış üçün)
null // Obyektin yoxluğu

ECMAScript v3-də ifadələrdə həmçinin massiv literalları və obyekt literalları
dəstəklənir. Məsələn:

{ x:1, y:2} // Obyektin inisializatoru
[1,2,3,4,5] // Massivin inisializatoru

Literallar – istənilən proqramlaşdırma dilinin mühüm hissəsidir, çünki, literalsız
proqram yazmaq mümkün deyil. JavaScript-də olan müxtəlif literallar 3-cü
fəsildə təsvir edilmişdir.

2.7. İden�fikatorlar
I�denti�ikator – sadəcə verilən addır. JavaScript-də identi�ikatorlar, dəyişənlərin və
funksiyaların adları kimi, həmçinin bəzi dövrlərin nişanları kimi çıxış edir.
Mümkün identi�ikatorların formalaşması qaydaları Java və bir çox başqa
proqramlaşdırma dillərinin qaydaları ilə eynidir. Birinci simvol hərf, sətir xətti (_)
simvolu və ya dollar ($) işarəsi1 olmalıdır. Birinci simvoldan sonra istənilən hərf,
rəqəm, sətir xətti simvolu (_) və ya dollar işarəsi ola bilər. (Birinci simvol heç bir
halda rəqəm ola bilməz, çünki bu halda interpretator ədədləri identi�ikatorlardan
ayırmağa çətinlik çəkir.) Mümkün identi�ikator nümunələri:

i
my_variable_name
v13 _dummy
$str

ECMAScript v3-də identi�ikatorlar Unicode simvol dəstində olan bütün hər�ləri və
rəqəmləri ehtiva edə bilər. Standartın bu versiyasına qədər JavaScript-
identi�ikatorları ASCII dəsti ilə məhdudlaşmışdı. Bu işarə yalnız kodun
generasiyası vasitələri üçün nəzərdə tutulmuşdur, buna görə də
identi�ikatorlarda bu işarənin istifadəsindən çəkinmək lazımdır. 2.8. Ehtiyata
saxlanılan sözlər Unicode escape- ardıcıllıqları – identifaktorlarda 16 dərəcəli 4
onaltılıq rəqəmdən ibarət simvol kodu olan \u simvol birləşməsi vasitəsilə icra
edilir. Məsələn, π identi�ikatoru üçün \u03c0 kimi yazmaq olar. Bu sintaksis bu
cür narahat görünə bilər, amma mətnlər ilə iş zamanı tam Unicode simvol dəstini
dəstəkləməyən redaktorlarda və ya digər vasitələrdə bu Unicodesimvollarının
JavaScript- proqramların transliterasiyasını təmin edir.
Nəhayət, identi�ikatorlar ilə JavaScript-də digər məqsədlər üçün istifadə edilən
açar sözləri birbirilə uyğun gəlmir. Aşağıdakı bölmədə JavaScript-in xüsusi
ehtiyacları üçün ehtiyata saxlanmış açar sözlər göstərilmişdir.

2.8. Eh�yata saxlanılan sözlər

JavaScript-də bir neçə ehtiyata saxlanılan söz mövcuddur. Bu sözlər JavaScript-
proqramlarında identi�ikator kimi (dəyişən, funksiya və dövrlərin nişan adları
kimi) çıxış edə bilməz. Cədvəl 2.1-də ECMAScript v3-də standartlaşdırılmış açar
sözləri göstərilmişdir. JavaScript interpretatoruna görə bu sözlər xüsusi qiymətə
malikdir və dilin sintaksis hissəsini təşkil edir.

Cədvəl	2.1.	JavaScript-in	ehtiyata	saxlanılan	açar	sözləri

break do if switch typeof

case else in this var

catch false instanceofthrow void

continue finally new true while

default for null try with

delete function return

Cədvəl. 2.2 başqa açar sözləri göstərilmişdir. Hal-hazırda bu sözlər JavaScript-də
istifadə olunmur, amma dilin gələcək inkişaf etdirmələri üçün ECMAScript v3-də
ehtiyatda saxlanmışdır.

Cədvəl2.2. ECMA	genişlənilmələri	üçün	ehtiyata	saxlanmış	sözlər

Abstract double goto native static

Boolean enum implements package super

byte export import private synchronized

char extends int protected throws

class final interface public transient

const float long short volatile
 debugger

ECMAScript v4 standartının cari layihələri as, is, namespace və use açar
sözlərinin tətbiqinə imkan verir. Hərçənd ki, JavaScript cari interpretatorları bu
dörd açar sözündən identi�ikator kimi istifadə edilməsini qadağan etmir, ancaq
identi�ikatorlarda bu sözlərin istifadəsindən çəkinmək lazımdır.
Bundan başqa, JavaScript dilində qabaqcadan müəyyən edilmiş qlobal dəyişən və
funksiya identi�ikatorlarının istifadədən çəkinmək lazımdır. Cədvəl. 2.3-də
ECMAScript v 3 standartı ilə müəyyən edilən qlobal dəyişənlər və funksiyalar

göstərilmişdir. Konkret reallaşdırmalar öz qlobal görünmə sahəsi vasitəsilə
qabaqcadan müəyyən edilmiş elementləri ehtiva edə bilər. Bundan başqa,
JavaScript-in konkret platforması üzrə (kliyent, server və başqaları) bu siyahını
genişləndirə bilərik.

Cədvəl	2.3.	Çəkinməli	olduğumuz	digəri	denti�ikatorlar

Argument sencodeURI Infinity Object Str
ing
Array Error isFinite parseFloat
 SyntaxError
Boolean escape isNaN parseInt
 TypeError
Date eval Math RangeError
 undefined
decodeURI EvalError NaN ReferenceError
 unescape
decodeURIcomponent Function Number RegExp
 URIError

3
Məlumat tipləri və qiymətlər

Kompüter proqramları qiymətlərin	 manipulyasiya nəticəsində işləyir.
Proqramlaşdırma dilində təqdim edilmiş və emal edilə bilən, qiymətlər məlumatlar
tipindən	 (data	 types) və proqramlaşdırma dilinin ən fundamental
xarakteristikalarından biri olan bu tipi dəstəkləyən məlumat tiplərinin dəstindən
ibarətdir. JavaScript üç elementar məlumat tipi ilə işləməyə imkan verir:

ədədlər
mətn	sətirləri	(və	ya	sadəcə	sətirlər)
məntiqi	doğruluq	qiymətləri	(və	ya	sadəcə	məntiqi	qiymətlər)

JavaScript-də həmçinin iki bayağı məlumat tipi təyin edilir: null və undefined.
Bu qiymətlərin hər biri yalnız bir qiymətə malikdir. JavaScript bu elementar məlumat
tiplərindən savayı obyekt	(object) kimi bilinən tərkib məlumat tipini də dəstəkləyir.
Obyekt (yəni, obyekt məlumat tipinin üzvü) qiymətlərin (ədədlər sətirlər və ya
elementlər kimi və ya daha mürəkkəb, məsələn başqa obyektlər) kolleksiyasını təşkil
edir. Obyektlər JavaScript-də ikili təbiətə malikdir: obyekt adlandırılmış qiymətlərin
qaydaya salınmamış kolleksiyası kimi və ya nömrələnmiş qiymətlərin qaydaya
salınmış kolleksiyası kimi.
Obyektin sonuncu vəziyyətində obyekt massiv	 (array) adlanır. Hərçənd ki,
JavaScript-də obyektlər və massivlər ayrı-ayrı məlumat tipidir və bu kitabda ayrı
tiplər kimi baxılır. JavaScript-də obyektin daha bir xüsusi tipi müəyyən edən
 funksiyadır	(Function).
Funksiya – icra edilən kodun bağlandığı obyektdir. Funksiya	 (invoked), müəyyən
əməliyyatın icra edilməsi üçün çağırıla bilər. Massivlər kimi, funksiyalar da, digər
obyekt növlərindən fərqlər və JavaScript-də funksiyalar ilə işləmək üçün xüsusi
sintaksis müəyyən edilmişdir. Buna görə biz obyektlərdən və massivlərdən asılı
olmayaraq funksiyalarla tanış olacağıq. JavaScript-in baza dilində funksiyalardan və
massivlərdən başqa obyektlərin bir qədər xüsusi növləri də vardır. Bu obyektlər yeni
olmayan məlumat tiplərini və yalnız obyektlərin yeni sini�lərini (classes) dəstəkləyir.
Fəsil başlanğıc səviyyə üçün bir qədər dar ixtisaslaşdırılmış təfərrüatları özündə
ehtiva edir.

3.1. Ədədlər

Ədədlər – xüsusi izah tələb etməyən əsas məlumat tipidir. JavaScript , C və Java kimi
proqramlaşdırma dillərindən fərqli olaraq, tam və həqiqi ədədlər arasında fərq
qoymur. JavaScript-də bütün ədədlər 64-dərəcəli həqiqi ədədlərlə (üzən nöqtə (kəsr
ədədlər) daxil olmaqla) təqdim edilirlər ki, belə format IEEE 754.12 standartına
əsasən aparılır. Bu format vasitəsilə ±1,7976931348623157 × 10308 dən ±5 × 10-324
qədər ədədlərdən istifadə etmək olar. Bilavasitə JavaScript- proqramının kodunda
olan ədəd, ədəd	 literalı adlanır. JavaScript bir neçə ədəd literalını dəstəkləyir. Bu
haqda sonrakı bölmələrdə bəhs olun. Diqqətli olun: istənilən mən�i ədəd literalı
əvvəlində "mən�i" işarəsi qoyulur. Ancaq faktiki olaraq mən�i (minus) işarəsinin
dəyişməsi ədəd literallarının sintaksis hissəsi olmayan unar operatorunu təşkil edir
(5-ci fəsilə baxmaq) .

3.1.1. Tam literallar

JavaScript-də tam onluq ədədlər rəqəm ardıcıllığı ilə yazılır. Məsələn:

0
3
10000000

JavaScript-in ədəd formatı bu diapazonda olan bütün tam ədədləri dəqiq təqdim
etməyə imkan verir: 9007199254740992 (– 253) 9007199254740992 (253) qədər
daxil olaraq. Bu diapazondan kənar tam qiymətlərin kiçik dərəcədə dəqiqliyi itə bilər.
Qeyd etmək lazımdır ki, JavaScript-də (xüsusən bit operatorları, 5-ci fəsildə təsvir
edilmişlər) bəzi tam əməliyyatlar qiymətləri (mənaları) qəbul edən 32-dərəcəli –
2147483648 (– 231) 2147483647-ə qədər (231 – 1) ədədlər ilə yerinə yetirilirlər.

3.1.2. Onal�lıq və səkkizlik

JavaScript-in onluq tam literallarında başqa onaltılıq say sistemində olan qiymətləri
də tanıyır. Onaltılıq ədəd 0x və 0X ardıcıllığı ilə başlayır və həm rəqəm həm də bəzi
hər�lər vasitəsilə yazılır. Onaltılıq rəqəm – 0- dan 9-a qədər və ya a-dan (və ya A) f-ə
qədər (və ya F) qədər hər�lərdən ibarət rəqəmdir. Onaltılıq sistemin tam ardıcıllığı
(0-F) onluq say sisteminin 0-15 ədədlərinə uyğundur. Aşağıda onaltılıq tam ədəd
literallarının nümunələri göstərilib:

0xff // 15*16 + 15 = 255 (10 əsaslı)
0xCAFE911

Hərçənd ECMAScript standartı səkkizlik say sistemində tam ədəd literallarını
dəstəkləmir, yalnız JavaScript-in bəzi reallaşdırmaları bu tip məsələləri həll etməyə
icazə verir. Səkkizlik literallar 0-7 aralığında olur və digər ədədlər bu rəqəmlərin
vasitəsilə düzəlir. Məsələn:

0377 // 3*64 + 7*8 + 7 = 255 (10)

çünki, bəzi reallaşdırmalar səkkizlik say sisteminin literallarını dəstəklədiyi halda,
bəziləri dəstəkləmir. Heç vaxt aparıcı tək sıfır rəqəminin tam literalının hansı say
sistemində səkkizüzlü say kimi və ya onluq) olduğunu bilmək olmur.

3.1.3. Həqiqi ədəd literalları

Həqiqi ədəd literalları onluq say sisteminə malik olmalıdır; bu literallar həqiqi
ədədlərin ənənəvi sintaksisindən ibarətdir.
Tam qiymət (tam ədədin, onluq kəsrini və ya qalıqlı ədədin tam hissəsi müəyyən
edir. Həqiqi ədədlərin literalları həmçinin səciyyəvi nəsihətdə təqdim edilə bilər:
həqiqi ədəd, e ədədini (və ya E), plyus və ya minus və tam eksponenti dəstəkləyir. Bu
nəsihət 10-da qiymətlə (mənayla) müəyyən edilən dərəcələrə vurulmuş (artırılmış)
həqiqi ədədi ifadə edir eksponentlər. Belə sintaksisin daha yığcam təyini:

[rəqəmlər]	[.rəqəmlər]	[(E|e)	[(+|-)]	rəqəmlər]
Məsələn:

3.14
2345.789
.333333333333333333

6.02e23 // 6.02 X 1023

1.4738223E-32 // 1.4738223 X 10-32

Diqqətli olun: həqiqi ədədlər sonsuzdur, amma JavaScript-də həqiqi ədədlər
məhdudlaşdırılmışdır (daha dəqiq 18437736874454810627) və yalnız
məhdudlaşdırılmış həqiqi ədədlər dəqiq ifadə edilir. Deməli, JavaScript-də həqiqi
ədədlərlə işləyərkən ədədin təqdim edilməsi zamanı həqiqi ədədləri
yuvarlaqlaşdırılması ola bilər. Yuvarlaqlaşdırma dəqiqliyi, kifayət qədərdir və
təcrübələrdə nadir hallarda xətalara gətirib çıxarır.

3.1.4. Ədədlərlə iş

JavaScript-dilində proqramlarda ədədlərlə işləmək üçün hesab operatorlarından
istifadə edilir. Əsas hesab operatorları, toplama, çıxma, vurma, bölmə
operatorlarından ibarətdir. Bu və digər hesab operatorlarının ətra�lı təsviri 5-ci
fəsildə verilib. JavaScript-in göstərilmiş əsas hesab operatorlarından başqa daha
mürəkkəb riyazi əməliyyatların icra edilməsinə kömək edən və dilin baza hissəsinə
aid olan böyük miqdarda riyazi funksiya aiddir.
Rahatlıq üçün bu funksiyalar Math obyektinin xüsusiyyətləri şəklində saxlanılır və
funksiyalara giriş üçün həmişə Math hər�i adından istifadə olunur. Məsələn, sinus x
dəyişəninin ədədi qiymətini aşağıdakı qaydada hesablamaq olar:

sin_of_x = Math.sin(x);
Ədədin kvadrat kökü isə belə hesablanır:

hypot = Math.sqrt(x*x + y*y);
JavaScript-i dəstəklənən bütün riyazi funksiyalar haqqında ətra�lı məlumatlar Math
və kitabın üçüncü hissəsinin uyğun olan listinqləri obyektinin təsvirində gətirib
çıxarılmışdır

3.1.5. Ədəd dəyişiklikləri

JavaScript dilində ədədləri sətirlər şəklində təqdim etmək və ədədləri sətirlərə
dəyişdirmək olar. Bu dəyişikliklərin sırası 3.2 paraqrafında təsvir edilir.

3.1.6. Xüsusi ədəd qiymətləri

JavaScript-də bir neçə xüsusi ədəd qiyməti müəyyən edilmişdir. Məsələn, təsəvvür
edilən ən böyük həqiqi ədəd, qiymət diapazonunu aşır və nəticəyə JavaScript-də
Infinity kimi bilinən xüsusi sonsuzluq qiyməti mənimsənilir. Müsbət və mən�i
sonsuzluq müva�iq olaraq Infinity və -infinity kimi təqdim edilir.
JavaScriptin aldığı daha bir xüsusi ədəd qiyməti NaN qiymətidir. Bu qiymət riyazi
əməliyyat qeyri-müəyyən nəticə aldıqda və xətalı olduqda (məsələn, sıfırın sıfıra
bölünməsi, tangens 90 dərəcənin qiyməti) nəticəyə mənimsədilir. NaN qiyməti "ədəd-
deyil" xüsusi qiymətinin nəticədir. "Ədəd-deyil" (Not-a-Number) qeyri-adi
xüsusiyyətlərə malikdir: o heç bir ədədə hətta özünə belə bərabər deyil! Bu qiymətın
yoxlanılması xüsusi isNaN() funksiyası mövcuddur. Oxşar funksiya olan,
isFinite(), ədədi, NaN və ya müsbət/mən�i sonsuzluq bərabərsizliyində
yoxlamağa imkan verir. Cədvəl. 3.1 JavaScript-də xüsusi ədəd qiymətləri üçün
müəyyən edilmiş bir neçə işarə göstərilmişdir.

Cədvəl	3.1.	Xüsusi	ədəd	sabitləri

Sabit İzahı
Infinity Sonsuzluğu ifadə edən xüsusi qiymət
NaN "Ədəd-deyil" xüsusi qiyməti
Number.MAX_VALUE Təsəvvür edilən maksimal qiymət
Number.MIN_VALUE Təsəvvür edilən minimal qiymət
Number.NaN "Ədəd-deyil" xüsusi qiyməti
Number.POSITIVE_
INFINITY

Müsbət sonsuzluğu ifadə edən xüsusi
qiymət

Number.NEGATIVE_
INFINITY

Mən�i sonsuzluğu ifadə edən xüsusi
qiymət

ECMAScript v1-də müəyyən edilmiş JavaScript 1.3 versiyasına qədər In�inity və NaN
sabitləri yoxdur. Ancaq Number tipli müxtəlif sabitləri JavaScript 1.1-dən başlayaraq
mövcuddur.

3.2. Sə�rlər

Sətir, JavaScript-də hərf, rəqəm, punktuasiya nişanları və digər Unicode- simvollar
ardıcıllıqlarını və həmçinin mətnin daxiledilməsinə imkan verən məlumat tipidir. Siz
növbəti dərslərdə görəcəksiniz ki, sətir literalları cüt və ya tək dırnaq (apostrof)
simvolları arasında olur. Diqqətli olun: C, C++ və Java-da simvolik məlumat tipi kimi
bilinən char tipi JavaScript-də yoxdur. Tək simvol tək uzunluğa malik sətir ilə təqdim
edilə bilər.

3.2.1. Sə�r literalları

Sətir literalı – tək və ya ikiqat dırnaqlarla (' və ya ") əhatə olunmuş Unicode-
simvolları ardıcıllığıdır. Əgər mətndə ikiqat dırnaqlardan istifadə etmək lazımdırsa
literalı tək dırnaqlarla (') əhatələmək (içərisində yazmaq) lazımdır. Eyni qaydanın
əksi olaraq, əgər mətndə tək dırnaqlardan (apostrof) istifadə etmək lazımdırsa
literalı cüt dırnaqlarla (") əhatələmək (içərisində yazmaq) lazımdır. Sətir literalı
proqramın bir sətirində yazılmalıdır və ikinci sətirə keçirilmir. Sətir literalında yeni
sətir daxil etmək üçün \n simvol ardıcıllığından istifadə etmək lazımdır. Sətir
literallarına aid nümunələr:

"" // Boş sətir: simvolların sayı sıfır
'testing'
"3.14"
'name=" myform"'
"Siz O'Reilly nəşriyyatının kitablarına üstünlük verirsiniz, doğru deyilmi?"
"Bu sətir literalı 2 cərgə\nehtiva edir"
"π – çevrənin uzunluğun onun diametrinə olan nisbətidir"

Sonuncu sətir nümunəsində göründüyü kimi ECMAScript v1 standartı sətir
literallarında Unicodesimvollarından istifadə etməyə imkan verir. Ancaq bu
JavaScript 1.3-dən erkən versiyalarda dəstəklənmir və bu versiyalarda sətirlər
adətən yalnız ASCII və ya Latin-1 dəstində olan simvolları dəstəkləyir.
Nəzərə alın ki, tək dırnaq ilə məhdudlaşdırmiş sətir ilə ehtiyatlı davranmaq lazımdır.
Kiçik bir yiyəlik halı şəkilçisi (can’t, O’Reilly kimi) olan apostrofun düzgün daxil
edilməməsi nəticəsində xəta baş verə bilər. Çünki apostrof ilə tək dırnaq işarəsi eyni

bir simvoldur və istisna halı metodu ilə əks sleş simvolu vasitəsilə istifadə
edilməlidir.
JavaScript kliyentində proqramlar adətən HTML-koddan ibarət ola bilər və öz
növbəsində HTML-kodda, JavaScript-kodunun sətirlərini ehtiva edə bilər. Buna görə
də JavaScript-i HTML teqlərə və hadisələrə tətbiq edərkən JavaScript kodu dırnaq
içərisində yazılır. Aşağıdakı nümunədə JavaScript-ifadəsi kimi "Təşəkkür" sətiri tək
dırnaqlarla əhatələnmişdir. Kodun özü isə HTML atributunun hadisə emalçısına
mənimsədildiyinə görə cüt dırnaqlar ilə əhatələnmişdir:

Məni klikləyin!

3.2.2. Sə�r literallarında idarəedici ardıcıllıqlar

Əks sleş (\) simvolu JavaScript-sətirlərində xüsusi təyinata malikdir. Onu yanında
gələn simvollarla birlikdə, müva�iq simvol ifadə edir. Adətən sətirin daxilində
yerləşdirilməsi mümkün olmayan simvolların sətirə mənimsədilməsi üçün istifadə
edilir. Məsələn, \n – yeni sətirə keçmək üçün istifadə olunur (escape	sequence).
Əvvəlki bölmədə qeyd olunmuş başqa nümunə – tək dırnaq simvolunu ifadə edən \'
simvol birləşməsidir. Bu idarəedici sətir ardıcıllığı tək dırnaq ilə əhatələnmiş sətir
sahəsinə tək dırnağın simvolunun əlavə edilməsi üçündür. I�ndi bizə aydın olur ki,
niyə bu ardıcıllıqları idarə edici adlandırırıq. Burada əks sleş simvolu tək dırnaq
simvolunun interpretasiyasını idarə etməyə imkan verir. Aşağıdakı nümunədə biz
tək dırnaq işarəsinin əks sləş simvolu ilə tətbiqi nəticəsində biz bu işarəni sətir
sonluğu kimi deyil, apostrof kimi veririk:

'You\'re right, it can\'t be a quote'

Cədvəl. 3.2-də idarəedici ardıcıllıqlar və onların tərə�indən ifadə edilən simvollar
göstərilmişdir. I�ki idarə edici ardıcıllıq ümumiləşdirilmişdir; onlar əks sləşin yanında
onaltılıq say sistemində olan kodu göstərməklə Latin-1 və ya Unicode simvol
dəstinin tərkibində olan istənilən simvolun göstərilməsi üçün tətbiq edilə bilər.
Məsələn, \xA9 ardıcıllığı müəllif hüquqları simvolunu ifadə edir. Bu simvol, Latin-1
kodlaşdırmasında A9 onaltılıq koduna malikdir. \u simvolları da analoji xüsusiyyətə
malikdir və dörd onaltılıq rəqəmlə göstərilmiş sərbəst Unicode simvolunu ifadə edir.
Məsələn, \u03c0 simvolu π ifadə edir. Qeyd etmək lazımdır ki, idarəedici
ardıcıllıqlarında ECMAScript v1 standartı üzrə Unicode-simvol dəsti tələb olunur.
JavaScript 1.3-dən daha əvvəl çıxmış versiyalarda bu xüsusiyyət dəstəklənmirdi.
JavaScript-in bəzi realizasiyaları həmçinin Latin-1 simvolunun tapşırığını əks sleş
simvolundan sonra göstərilmiş üç səkkizlik simvolla tətbiq edilə bilər, amma belə
idarəedici ardıcıllıqlar ECMAScript v3 standartında dəstəklənmir və istifadə
olunmamalıdır.

Sabit İzahı
\0 NUL simvolu
\b “Bəkspeys” simvolu
\t U� füqi tabulyasiya (\u0009)Funksiya,

arqumentlər
\n Yeni sətirə keçid (\u000A)Konstruktor çağırışı
\v Şaquli tabulyasiya (\u000B)
\f Yeni səhifəyə keçid (\u000C)
\r Karetin qaytarılması (\u000D)
\" I�kiqat dırnaq (\u0022)
\' Tək dırnaq (\u0027)
\\ Əks sleş (\u005C)
\xXX Latin-1 simvol dəstinə aid edilən, XX, onaltılıq

say sistemində verilən iki ədəddir
\uxXXXX Unicode simvol dəstinə aid edilən, onaltılıq say

sistemində verilən dörd XXXX ədədi Latin-1
simvol dəstinə aid edilən, XXX, səkkizlik say
sistemində verilən üç ədəddir.

\XXX 1-dən 377-ə qədər kod diapozununa malikdir.
ECMAScript v3 dəstəklənmir; burada belə yazı üsulu
is�fadə olunmamalıdır.

C
ə
d
v
ə
l.
3
.
2
.
J
a
v
a
S
c
ri
p
t-
d
ə
i
d
a
r
ə
e
d
ic
i

ardıcıllıqlar

Əgər "\" simvolu cədvəl	 3.2-də olan sabitlər ilə təqdim edilmədikdə, əks sləş
simvoluna önəm verilmir. Məsələn, \# – #-in özü alınır.

3.2.3. Sə�rlərlə iş

JavaScript-in inteqrasiya edilmiş imkanlarından biri də sətirləri birləşdirməkdir.
Əgər + operatoru ədədlərə tətbiq edilirsə, bu ədədlər toplanır, əgər sətirlərə tətbiq
edilirsə, bu sətirlər bitişdirilir, bu halda ikinci birinci sətirin sonuna əlavə edilir.
Məsələn:

msg = "Hello, "+ "world"; // Alınır: "Hello, world"
greeting = "Hörmətli, "+name+". Mənim ana səhifəmə xoş gəlmisiniz";

Sətir uzunluğunun (sətirdə olan simvolların miqdarı) təyini üçün length
xüsusiyyətindən istifadə olunur. Məsələn, əgər s dəyişəni sətiri tipindədirsə, bu
sətirin uzunluğunu aşağıdakı qaydada göstərmək olar:

s.length

Sətirlərlə işləmək üçün bir neçə metod mövcuddur. s sətirinin son simvolu belə
göstərmək olar:

last_char = s.charAt(s.length – 1)

I�kinci simvolu çıxartmaq üçün, s sətirinin üçüncü və dördüncü simvolları, təlimata
tətbiq edilir:

sub = s.substring(1,4);

S sətirində birinci simvol olan "a" hər�inin mövqeyini aşağıdakı qaydada müəyyən
etmək olar:

i = s.indexOf('a');

Sətirlərlə işləyən digər metodlar da vardır. Bu metodların təffərrüatı String
obyektinin təsvirində və kitabın üçüncü hissəsinin listinqlərində sənədlərlə
əsaslandırılmışdır.
Əvvəlki nümunələrdən anlamaq olar ki, JavaScript-sətirləri (və gələcəkdə tanış
olacağımız JavaScript massivləri) 0-dan başlayaraq indeksləşdirilir. Başqa sözlə,
sətirin birinci simvolunun sıra nömrəsi sıfıra bərabərdir. C, C++ və Java-da işləmiş
proqramçılara artıq bilirlər ki, bu dillərdə sətirlərin və massivlərin numerasiyası
vahiddən başlanır.
JavaScript-in bəzi realizasiyalarında sətirlər, massivlər kimi ayrı-ayrı simvollar
şəklində götürülə bilər (amma bu sətirlərin yazılması prosesinə şamil edilmir) və
buna görə charAt() metodunun çağırışı aşağıdakı qaydada yazıla bilər:

last_char = s [s.length – 1];

Ancaq bu sintaksis ECMAScript v3-də standartlaşdırılmamışdır, daşınan deyil və
ondan çəkinmək lazımdır. Biz obyekt məlumat tipi müzakirə edəndə, xüsusiyyətin
əvvəlki nümunələri və sətirlər metodları obyektlər metodları kimi istifadə olunur. Bu

o demək deyil ki, sətirlər – obyektlərin tipidir. Əslində sətirlər JavaScript-in ayrı bir
məlumat tipidir. Onların xüsusiyyətlərinə və metodlarına giriş üçün obyekt sintaksisi
istifadə olunur, amma sətir özü heç vaxt obyekt olmur! Bunun niyə belə olduğunu, biz
bu fəsilin sonunda biləcəyik.

3.2.5. Ədəd-sə�r dəyişikliyi

Sətir ədəd kontekstində istifadə olunduqda, avtomatik olaraq ədədə dəyişdiriləcək.
Məsələn, aşağıdakı ifadə tamamilə mümkündür:

var product = "21" * "2"; // nəticədə 42 ədədi alınacaq.

Bu şəraitin əksi zəruri olduqda ədədi sətiri dəyişdirmək olar; bunun üçün kifayət
qədər sadə metod, sətirdən 0 qiymətini çıxmaq lazımdır:

var number = string_value - 0;

(Diqqətli	olun:	bu	vəziyyətdə	toplama	əməliyyatı	sətirlərin	bitişdirilməsi	əməliyyatı	kimi
yerinə	yetiriləcək.)

Ədəd sətir dəyişikliyinin daha az inkişaf etmiş və daha düzxətli üsulu Number()
funksiya konstruktoruna müraciət ilə icra edilir:

var number = Number(string_value);

Ədəd-sətir dəyişikliyinin belə üsulunun çatışmazlığı ondan ibarətdir ki, bu qədər
sadə əməliyyatı həddən artıq ciddi üsulla yerinə yetirir. Bu üsul yalnız onluq say
sistemində oluna bilər və bu üsul yalnız rəqəm mövcudluğunu güman edərək, boşluq
simvolları, sətirdə ədəddən sonra gələn başqa qeyri-rəqəmsal simvolların
yaranmasına icazə verir.
Dəyişikliyin daha elastik üsulu parseInt () və parseFloat() funksiyalarının köməyilə
təmin olunur. Bu funksiyalar istənilən qeyri-rəqəmsal simvollara məhəl qoymadan
sətirin başlanğıcında duran sərbəst ədədləri dəyişdirəcək və ədədin ardınca
yerləşdirilmiş simvollar qaytarılacaq. ParseInt() funksiyası yalnız tam ədəd
dəyişikliyini yerinə yetirir. parseFloat() funksiyası isə həm tam, həm də həqiqi
ədədlər ilə ədəd dəyişikliyini yerinə yetirə bilər. Əgər sətir "0x" və ya "0x"
simvollarından başlayırsa, parseInt() funksiyası sətiri onaltılıq ədəd kimi göstərir.3

Məsələn:

parseInt("3 dovşan"); // 3 qiymətini alır
parseFloat("3.14 metr") ; // 3.14 qiymətini alır
parseInt("12.34"); // 12 qiymətini alır parseInt
("0xFF"); // 255 qiymətini alır

I�kinci arqument kimi parseInt() funksiyası hesablama sistemlərini də qəbul edə bilər.
2-dən 36-a qədər olan ədəd diapozunda düzgün alınır, məsələn:

parseInt("11", 2); // 3 (1*2 + 1) qiymətini alır
parseInt("ff", 16); // 255 qiymətini alır (15*16 + 15)
parseInt("zz", 36); // 1295 qiymətini alır (35*36 + 35)
parseInt("077", 8); // 63 (7*8 + 7) Qaytaracaq
parseInt("077", 10); // 77 (7*10 + 7) Qaytaracaq

Əgər parseInt() və parseFloat() metodlarında dəyişliyi yerinə yetirmək mümkün
deyilsə, onlar NaN qiymətini alır:

parseInt("eleven"); // NaN qiymətini alacaq.
parseFloat("$72.47"); // NaN qiymətini

3.3. Mən�qi qiymətlər

Ədəd və sətir məlumat tipləri böyük və ya sonsuz mümkün qiymətlər miqdarına
malikdir. Məntiqi məlumat tipi isə, əksinə, yalnız iki true və false literalları ilə
təqdim edilmiş mümkün məntiqi qiymətlərdən ibarətdir. Məntiqi qiymət, doğruluq
ətrafında icra edilir. JavaScript-proqramlarda yerinə yetirilən müqayisələrin
nəticələri adətən məntiqi qiymətlərdir. Məsələn:

a == 4

Bu ifadə a dəyişəninin 4 ədədinə bərabər olmasını yoxluyur. Əgər a dəyişəni
həqiqətən də dördə bərabərdirsə, true məntiqi qiymətinin şərti ödənilir. Əgər a
dəyişəni dördə bərabər deyilsə, müqayisənin nəticəsi false olacaq.
JavaScript-də məntiqi qiymətlər adətən idarəedici konstruksiyalarda istifadə olunur.
Məsələn, JavaScript-də if/else təlimatı hər hansı bir arqumenti yerinə yetirir, əgər
məntiqi qiymət true-a bərabər olarsa, əməliyyat yerinə yetirilir, əks halda false
qiyməti alınır. Adətən məntiqi qiyməti yaradan müqayisə bilavasitə istifadə olunan
təlimatla birləşir. Bu sözü kodla ifadə edək:

if(a == 4) b = b + 1;
else a = a + 1;

Burada yoxlama yerinə yetirilir, əgər a dəyişəni 4 ədədinə bərabərdirsə b dəyişəninin
qiymətinə bir vahid əlavə edilir; əks təqdirdə a dəyişəninin qiymətinə bir vahid əlavə
edilir. I�ki mümkün true və false məntiqi qiymətini, bəzən "düzdür" (true) və ya
"səhvdir" (false) və ya "bəli" (true) və "xeyr" (false) kimi baxılır.

3.3.1. Mən�qi qiymətlərin dəyişikliyi

Məntiqi qiymətlər başqa tiplərin qiymətlərinə asan dəyişdirilir, həm də bu tip
dəyişikliklər əksər hallarda avtomatik yerinə yetirilir.4 Əgər məntiqi qiymət ədəd
kontekstində istifadə olunursa onda, true qiyməti 1-ədədinə, false qiyməti isə 0
ədədinə dəyişdiriləcək. Əgər məntiqi qiymət sətir kontekstində istifadə olunursa,
onda true qiyməti "true" sətirinə , false qiyməti isə "false" sətirinə
dəyişdiriləcək.
Məntiqi qiymət birdən yuxarı ədəd kimi istifadə olunduqda, true qiymətinə
dəyişdiriləcək. Əgər qiymətlər 0-a və ya NaN-a bərabərdirsə, false məntiqi
qiymətinə dəyişdiriləcək. Məntiqi qiymətlərdə sətirlərdə istifadə edildikdə, əgər sətir
boş sətir deyilsə, true qiymətinə dəyişdiriləcək, əks təqdirdə dəyişiklik
nəticəsində false qiyməti alınacaq. null və undefined xüsusi qiymətləri false
qiymətinə dəyişdiriləcək və istənilən funksiya, obyekt və ya massivin qiymətləri
null-dan böyükdür və true qiymətinə dəyişdiriləcəklər.
Əgər siz dəyişikliyi açıq- aydın yerinə yetirmək istəyirsinizsə, Boolean()
funksiyasından istifadə etmək olar:

var x_as_boolean = Boolean(x);

Açıq dəyişikliyin başqa üsulu ikiqat məntiqi inkar operatorunun istifadəsi ilə
mümkündür:

var x_as_boolean = !!x;

3.4. Funksiyalar

Funksiya – icra edilən kodun fraqmentidir, hansı ki, JavaScript-proqramında və ya
JavaScript reallaşdırmasında qabaqcadan müəyyən edilmişdir. Funksiya JavaScript-
proqramında yalnız bir dəfə təyin edilir, lakin istənilən icra edilə və ya səbəb çağırıla
bilər Funksiyalar arqumentləri, qiyməti və ya qiymətləri müəyyən edən və
hesablamaları yerinə yetirməli olan parametrləri ötürə bilir; həmçinin funksiya bu
hesablamaların nəticəsini təşkil edən qiyməti qaytara bilər. JavaScript
reallaşdırmaları bir çox qabaqcadan müəyyən edilmiş funksiya təklif edir. Bunlara
misal olaraq, bucağın sinusunu hesablayan Math.sin() funksiyasını göstərmək olar.

JavaScript, proqramların ehtiva etdiyi şəxsi funksiyaları da müəyyən edə bilər
məsələn, belə bir kod:

function square(x) // Funksiya square adlanır. O bir x arqumentini qəbul
 // edir.

{ // Burada funksiyanın əsası başlanır.
return x*x; // Funksiya öz arqumentini kvadrata yüksəldir və

 // alınmış qiymətə qayıdır
}

 // Burada funksiya bitir.

Funksiyanı müəyyən etdikdən sonra, funksiya təyin etdiyimiz ad vasitəsilə
funksiyanı çağırmaq olar. Əgər funksiyada arqument təyin etmişiksə onda
funksiyanın adının qarşısında mötərizə daxilində həmin arqumentə uyğun qiymət
daxil edirik, əks halda funksiyanın adının qarşısında boş mötərizələr qoyulmalıdır.
Bir çox dillərdə, həmçinin Java-da funksiyalar – dilin məlumat tipi qismində deyil,
yalnız sintaktis elementləri qismində iştirak edir: buna görə də funksiyaları müəyyən
etmək və çağırmaq mümkündür. JavaScript-də funksiyalar bütün həqiqi
qiymətlərdən təşkil oluna bilər ki, bu da proqramlaşdırma dilinin elastikliyindən
xəbər verir. Daha sadə dildə desək, funksiyalar dəyişənlərdə, massivlərdə və
obyektlər saxlanıla, həmçinin arqumentlər kimi başqa funksiyalara ötürülə bilər.
Funksiyaların çağırışı və onlardan istifadə etmək üsullarında 8-ci danışılır. Bir halda
ki, funksiyalar ədəd və sətirlər kimi qiymətlərdən təşkil olunub, onlara obyekt
xüsusiyyətlərinə mənimsədilə bilər. Funksiyaya obyekt xüsusiyyətinə
mənimsədildikdə (obyekt məlumat tipi və obyektin xüsusiyyətləri 3.5	 saylı
paraqrafda təsvir edilmişdir), bu obyekt metodu adlanır. Metodlar – obyekt yönümlü
proqramlaşdırmanın mühüm hissəsidir. Məhz, 7-ci fəsil OYP-yə həsr edilmişdir.

3.4.1. Funksional literallar

Əvvəlki bölmədə biz square() funksiyasının təyinini gördük. Adətən JavaScript-
proqramlarında funksiyaların əksəriyyəti bu sintaksis ilə təsvir edilir. Ancaq
ECMAScript v3 standartı funksional literalların təyini üçün sintaksisə (JavaScript 1.2-
də və daha gec versiyalarda reallaşdırılmış) malikdir. Funksional literal Function
açar sözünün köməyi ilə, funksiyanın adı ilə birlikdə verilir. Funksiyanın adının
qarşısında duran mötərizələrin içərisində bu funksiyanın malik olduğu
arqumentlərin siyahısı göstərilir. Funksiya �iqurlu mötərizələr ilə başlayıb, �iqurlu
mötərizələr ilə bitir. Funksional literal ilə təyin olun funksiyalara ad verilməyə bilər.
Ən böyük fərq ondan ibarətdir ki, funksional literallar digər JavaScript- ifadələri kimi
yazıla bilər. Yəni, square() bu şəkildə funksiyasını təyin etmək vacib deyil:

function square(x)
{
return x*x;

}

Bunu literalların köməyi ilə aşağıdakı kimi də etmək olar:

var square = function (x)
{
return x*x;

}
Belə, müəyyən edilmiş funksiyalar adətən lyambda-funksiya adlandırılır. Bu, üsul ilk
dəfə LISP proqramlaşdırma dilində istifadə edilmişdir.

Elementar səviyyədə siz bu literalların xeyirini görməsənizdə, mürəkkəb
ssenarilərdə siz görəcəksiniz ki, onlar kifayət qədər rahat və faydalıdır. Funksiyanın
təyininin daha bir üsulu mövcuddur: arqumentlərin siyahısını və funksiyanın əsasını
Function()-konstrukturunda sətirlər şəklində vermək olar. Məsələn:

var square = new Function(" x", "return x*x;");
Funksiyaların bu cür təyindən nadir hallarda istifadə olunur. Bu üsulda funksiyanın
əsas hissəsini sətir şəklində vermək narahatdır və bu üsul yuxarıda sadalanan oxşar
tərzdə müəyyən edilmiş funksiyalara nisbətən daha az effektivdir.

3.5. Obyektlər

Obyekt – adlandırılmış qiymətlər kolleksiyasıdır. Bunlar, adətən obyektin xüsusiyyəti
(properties) adlandırılır. Obyektin xüsusiyyətinə istinad etmək üçün,
obyektin_adı.xüsusiyyət şəklində göstərmək lazımdır. Məsələn, əgər image adlı
obyekt width və height xüsusiyyətlərinə malikdirsə, biz bu xüsusiyyətlərə
aşağıdakı qaydada istinad edə bilərik:

image.width
image.height

Obyektlərin xüsusiyyətləri JavaScript-də dəyişənlərin xüsusiyyətinə oxşardır .
Obyektlər, massivlər, funksiyalar və başqa obyektlər də daxil olmaqla istənilən
məlumat tipi özündə ehtiva edə bilər. Buna görə də bu cür JavaScript-kodu göstərmək
olar:

document.myform.button

Bu fraqment obyektin button xüsusiyyətinə istinad edir, hansı ki, bu xüsusiyyət,
document adlı obyektin myform xüsusiyyətində saxlanılır.
Əvvəlki bölmələrdə deyildiyi kimi, obyekt xüsusiyyətində saxlanılan funksiya adətən
metod adlanır və xüsusiyyətin adı metodun adı olur. Metodun çağırılması zamanı
əvvəlcə funksiyanın göstərişi üçün obyekt ilə birlikdə "nöqtə" operatorundan istifadə
olunur və sonra funksi. Məsələn, document adlı obyektin write() metodunu belə
çağırmaq olar:

document.write("bu sadəcə yoxlamadır");
JavaScript-də, obyektlər assosiativ massivlər rolunda çıxış edə bilər, yəni sərbəst
sətirlərlə sərbəst qiymətləri assosiasiya edə bilər. Assosativ massiv tətbiq edildikdə,
başqa sintaksis obyektlə belə işə tələb olunur xüsusiyyətlərə: tələb edilən
xüsusiyyətin adını ehtiva edən sətir kvadrat mötərizələrdən ibarət olmalıdır. Bu
üsulda, yuxarı qeyd etdiyimiz image obyektinin xüsusiyyətlərinə aşağıdakı kod
vasitəsi ilə müraciət etmək olar:

image["width"]
image["height"]

Assosiativ	 massivlər – güclü məlumat tiplərinə malikdir; onlar bir sıra
proqramlaşdırma texnologiyalarının reallaşdırması zamanı faydalıdır. Assosiativ
massivlər kimi obyektlərdən və onların ənənəvi tətbiqindən 7-ci fəsildə bəhs edilir.

3.5.1. Obyektlərin yaradılması
Biz 7-ci fəsildə görəcəyik ki, obyektlər xüsusi funksiya- konstruktorların çağırılması
ilə yaradılır. Aşağıdakı nümunələrdə yeni obyektləri yaradılır:

var o = new Object();
var now = new Date();
var pattern = new RegExp(" \\sjava\\s", "i");

Şəxsi obyekti yaradıb, onun xüsusiyyətlərini istəyə nizamlamaq olar:

var point = new Object();
point.x = 2.3;
point.y = - 1.2;

3.5.2. Obyekt literalları

JavaScript-də obyektləri yaratmaq və onların xüsusiyyətlərini göstərməyə imkan
verən obyekt literal sintaksisi mövcuddur.
Obyekt	 literalı (həmçinin obyektin inisializatoru adlandılır) �iqurlu mötərizələr
daxilində "xüsusiyyət/qiymət" cütlüklərinin vergülləri ilə bölünmüş siyahısını təşkil
edir. Cütlüklərin daxilində iki nöqtə ayırıcı rola malikdir. Beləliklə, əvvəlki nümunədə
yaradılmış point obyekti, aşağıdakı sətirlə inisializasiya edilmiş ola bilər:

var point ={ x:2.3, y: -1.2 };

Obyekt literalı əvvəlcədən qoyulmuş ola bilər. Məsələn:

var rectangle ={
upperLeft: { x: 2, y: 2},
lowerRight:{ x: 4, y: 4}
};

Nəhayət, mütləq obyekt literalların xüsusiyyət qiymətlərinin sabit olması məcburi
deyil – bu sərbəst JavaScript- ifadələri də ola bilərlər. Bundan başqa obyekt literalının
xüsusiyyət adlarını sətir qiymətləri ilə də ifadə etmək olar:

var square ={ "upperLeft": { x:point.x, y:point.y},
 'lowerRight':{ x: (point.x + side), y: (point.y+side)}

};

3.5.3. Obyektlərin dəyişikliyi

Obyekt məntiqi kontekstdə istifadə olunduqda, dəyişikliyin nəticəsi true qiymətidir.
Obyekt sətir kontekstində istifadə olunduqda, obyektin dəyişikliyi toString()
metodu ilə yerinə yetirilir və bu metodla qaytarılan sətir hesablamalarda iştirak edir.
Obyekt ədəd kontekstində istifadə olunduqda, obyektə əvvəlcə valueOf() metodu
çağrılır. Əgər bu metod primitiv tipdə olan ədəd qiymətini qaytarırsa, sonrakı
hesablamalarda bu qiymət iştirak edir. Ancaq çox zaman valueOf() metodu
obyektin özünü qaytarır. Belə vəziyyətdə obyekt əvvəlcə toString() metodu
vasitəsilə sətirə dəyişdiriləcək, sonra isə ədədə dəyişdirmək mümkün olarsa, ədədə
dəyişdiriləcək.
Obyektlər primitiv tipdə olan qiymətlərə dəyişdirərkən bir neçə həssas məqamlara
diqqət yetirməlisiniz ki, problemlərlə qarşılaşmayasınız. Mövzunun davamınına
fəsilin sonunda qayıdacağıq.

3.6. Massivlər

Massiv	(array), obyekt kimi, qiymətlər kolleksiyasını təşkil edir. Obyektdə olan hər
bir qiymət ad malikdirsə, massivdə olan hər bir qiymət nömrəyə və ya indeksə
malikdir. JavaScript-də massiv adının qarşısında kvadrat mötərizələr vasitəsilə
massivin indeksini göstərib, massivdən həmin qiymətləri çıxartmaq olar. Məsələn,
tutaq ki, a massivin adı, i isə, mən�i olmayan tam ədəddir, onda a[i] massivin
elementidir. Massivin indeksləri sıfırdan başlanır, yəni a[2] a massivinin üçüncü
elementinə istinad edir.
Massivlər JavaScript-in istənilən məlumat tipini ehtiva edə bilər. Bundan başqa,
həmçinin başqa massivlərə, obyektlərə və ya funksiyalara istinad edə bilər. Məsələn:

document.images[1].width

Bu kod obyektin ikinci elementində saxlanılan width xüsusiyyətinə, həmçinin
document obyektinin images xüsusiyyətində saxlanılan massivə istinad edir.
Diqqətli olun: burada təsvir edilən massivlər assosiativ massivlərdən (bölmə 3.5
baxmaq) fərqlənir. Bu bölmədə mən�i olmayan tam ədədlərlə indeksləşən "əsl"
massivlərdən bəhs edilir.
Assosiativ	 massivlər sətirlərlə indeksləşdirilir. Həmçinin qeyd etmək lazımdır ki,
JavaScript-də çoxölçülü	 massivlər	 dəstəklənmir (hərçənd ki, massivlərin daxilində
massivlərin mövcudluğuna icazə verilir).
Və nəhayət, bir halda ki, JavaScript tipləşdirilməmiş dildir və tipləşdirilmiş dillərdən
bir fərqi də ondan ibarətdir ki, massivin elementləri mütləq surətdə eyni tipə malik
olmaya bilər. Massivlər haqqında daha ətra�lı 7- ci fəsildə bəhs edilir.

3.6.1. Massivlərin yaradılması

Massiv Array() funksiya- konstruktorunun köməyi ilə yaradıla bilər. Yaradılmış
massivə istənilən miqdarda indeksləşdirilmiş element mənimsədilə bilər:

var a = new Array();
a[0] = 1.2;
a[1] = "JavaScript";
a[2] = true;
a[3] ={ x:1, y:3};

Massivlər, Array() konstruktorunun köməyilə də, elementlərinin ötürülməsi yolu ilə
inisializasiya edilmiş ola bilər. Beləliklə, massivin yaradılması və massivin
inisializasiyasının əvvəlki nümunəsini belə yazmaq olar:

var a = new Array(1.2, "JavaScript", true,{ x:1, y:3});

Əgər Array() konstruktoru yalnız bir ədəd mənimsədilərsə, o zaman konstruktor
massivin uzunluğunu müəyyən edəcək. Beləliklə, aşağıdakı ifadə qeyri-müəyyən 10
elementli yeni massiv yaradır:

var a = new Array(10);

3.6.2. Massiv literalları

JavaScript-də massivlərin yaradılmasi və inisializasiya üçün massivin literal
sintaksisi təyin edilir. Massivin literalı və ya inisializatoru – kvadrat mötərizələr ilə
əhatələnmiş və vergüllər ilə bölünmüş qiymətlərin siyahısıdır. Mötərizələrdəki
qiymətlər massivin elementi kimi sıfırdan başlayaraq ardıcıllıqla indekslərləşir.
Məsələn, əvvəlki bölmədəki nümunədə yaradılan və inisializasiya edilən massivin
proqram kodunu aşağıdakı qaydada yazmaq olar:

var a = [1.2, "JavaScript", true,{ x:1, y:3}];

Obyekt literalı kimi, massiv literalının səhv yazılışları ola bilər:

var matrix = [[1,2,3], [4,5,6], [7,8,9]];

Obyekt literallarındakı kimi, massiv literalında da elementlər sərbəst ifadə oluna və
mütləq surətdə sabit olmaya bilər:

var base = 1024;
var table = [base, base+1, base+2, base+3];

Massiv literalına qeyri-müəyyən element daxil etmək üçün, vergüllər arasında
qiymət yazmamaq kifayətdir. Aşağıdakı massiv özündə beş element ehtiva edir. Bu
qiymətlərdə üçü qeyri-müəyyəndir:

var sparseArray = [1, 5];

3.7. null qiymə�

JavaScript-də null açar sözü xüsusi mənaya malikdir. Adətən, null qiyməti obyekt
tipinin və həmin obyektin yoxluğunu bildirir. null qiyməti unikaldır və digər
qiymətlərdən fərqlənir. Əgər dəyişən null-a bərabərdirsə, onda mümkün obyekt -
massiv, ədəd, sətir və ya məntiqi qiymət olmur.
null qiyməti məntiqi kontekstdə istifadə olunduqda, bu qiymət false qiymətinə,
ədəd kontekstində olduqda, bu qiymət 0-a, sətir kontekstində istifadə olunduqda isə
"null" sətirinə dəyişdiriləcək.5

3.8. undefined qiymə�

JavaScript-də bəzi hallarda istifadə edilən daha bir xüsusi qiymət undefined
qiymətidir. Bu qiymətə müraciət etdiki ya elan edildiyi və qiyməti olmayan dəyişənə,
ya da ki, mövcud olmayan obyektin xüsusiyyətinə qayıdır. Qeyd edək ki, undefined
xüsusi qiyməti – null qiymətindən fərqlidir.
Hərçənd ki, null və undefined qiymətləri bir-birinə ekvivalent deyil, bərabərlik
operatoru (==) onları bərabər hesab edir. Aşağıdakı ifadəyə baxaq:

my.prop == null

my.prop xüsusiyyətinin mövcudluğundan asılı olmayaraq (yəni əgər my.prop
xüsusiyyəti olsa belə, onun qiyməti null olur) bu müqayisə həqiqidir. Bir halda ki,
null və undefined qiyməti qiymətin yoxluğunu ifadə edir, bu bərabərliyin tez-tez
şahidi olacağıq. undefined və null qiymətini bir-birindən fərqləndirmək tələb
olunda eynilik (===) və ya typeof operatorundan istifadə etmək lazımdır.
Null-qiymətindən fərqli olaraq, undefined qiyməti JavaScript-də ehtiyata
saxlanılan söz deyil. ECMAScript v3 standartı göstərir ki, həmişə undefined adı ilə
birlikdə qlobal dəyişən mövcuddur, hansı ki, bu dəyişən undefined qiymətinin ilk
mənasıdır. Beləliklə, standarta uyğun olan reallaşdırmada əgər qlobal dəyişə başqa
qiymətə mənimsədilməmişsə, undefined-ə açar sözü kimi baxmaq olar.
Əgər reallaşdırmada undefined dəyişəninin olduğunu bilmirsinizsə, onda öz şəxsi
undefined dəyişəninizi elan etmək olar:

var undefined;

Elan edilmiş lakin initializasiya edilməmiş (qiymət mənimsədilməmiş) dəyişən
yaratdıqda siz bu dəyişənin qiymətini undefined təyin etmiş olursunuz. Void (5-ci
fəsilə baxmaq) operatoru undefined qiymətinin alınmasının daha bir üsuludur.
undefined qiyməti məntiqi kontekstdə istifadə olunduqda, false qiymətinə, ədəd
kontekstində, NaN qiymətinə, sətir konteksində isə "undefined" sətirinə
dəyişdiriləcək.

3.9. Date obyek�

Əvvəlki bölmələrdə biz JavaScript-in dəstəklədiyi bütün fundamental məlumat
tiplərini təsvir etdik. Tarix dəyəri və vaxt bu fundamental tiplərə aid deyil, ancaq
JavaScript- də tarixi təqdim etmək üçün obyekt sini�i mövcuddur və bu sinifdən
istifadə edərək vaxt və digər bu tip məlumatlar ilə işləmək olar. JavaScript-də Date
obyekti new operatorunun köməyi ilə yaradılır və Date() konstruktorları (new
operatoru 5-ci fəsildə təsvir ediləcək, amma 7-ci fəsildə siz bu operator ilə daha
yaxından tanış olacaqsınız (obyektlərin yaradılmasında istifadə edildikdə):

var now = new Date(); // Vaxt və tarix tipində olan məlumatların
 // saxlanıldığı obyektin yaradılması.

// Yaradılan obyekt, Miladi təqviminə əsasən
// saxlanılır.
// Diqqətli olun: ayların nömrələri sıfırdan başlanır,
// buna görə də məsələn, dekabr ayı "11-ci aydır"!

var xmas = new Date(2000, 11, 25);

Date obyekti metodlar almaq və müxtəlif qiymətlər qurmağa imkan verir. Tarixlər və
vaxtı sətir formatında yerli vaxt və ya Qrinviç (GMT) vaxtı üzrə dəyişmək olar.
Məsələn:

xmas.setFullYear(xmas.getFullYear() + 1) ; // tarixi Miladi tarixi ilə
 // əvəz edirik.

var weekday = xmas.getDay(); // Miladi təqvimində 2007-ci
 // ilin ilk günü çərşənbə
 // axşamına təsadüf edir.

document.write ("Bu gün: "+ now.toLocaleString()); //tarix və vaxt məlumatı.

Date obyektində funksiyalar təyin edilə bilməz (metodlar, çünki, funksiya Date
obyekti vasitəsilə çağırıla bilmir) cərgə ilədə verilmiş tarixin dəyişikliyi üçün və ya
say formasına, millisaniyələrdə daxili təqdim etməyə (təsəvvürə), faydalı üçün
tarixlərlə əməliyyatların bəzi (bir qədər) növləri. Date obyekti və onun metodlarının
tam təsvirini siz kitabın üçüncü hissəsində görəcəksiniz.

3.10. Requlyar ifadələr

Requlyar ifadələr mətndə şablonların təsviri ilə zəngin və güclü sintaksisini malikdir.
Bu ifadələr vasitəsilə verilmiş şablona uyğun sözün axtarışı və tapılmış sözün
əvəzedilməsi əməliyyatları yerinə yetirilə bilər. Requlyar ifadələrin formalaşması
üçün JavaScript, Perl dilinin sintaksisi qəbul etmişdir. Requlyar ifadələr JavaScript-də
RegExp obyekti ilə təqdim edilir və RegExp() konstruktorunun köməyi ilə yaradılır.
Date obyekti kimi, RegExp obyekti də JavaScript-in fundamental məlumat tiplərinə
aid deyil; bu yalnız JavaScript reallaşdırmalarında verilən obyektlərin
standartlaşdırılmış tipidir. Ancaq Date obyektindən fərqli olaraq, RegExp obyektləri
literal sintaksisinə malikdir və bilavasitə JavaScript- proqramın koduna əlavə edilə
bilər. Mətn arasında müntəzəm ifadənin literalı iki sleşin simvoluyla yaradır.
Cütlükdəki ikinci simvolunda həmçinin şablona uyğun bir və bir neçə hərf qeyd
etmək olar. Məsələn:

/^HTML/
/[1-9] [0-9] */
/ \bjavascript\b/i

3.11. Error obyektləri

ECMAScript v3-də xətaların tənzimlənməsi üçün bir neçə tipdə sinif təyin edilir.
Yerinə yetirilmə zamanı xəta yaranarkən, JavaScript interpretatoru bu tiplərdən
birinin obyektini "yaradır". (Xətaların yaradılması və tənzimlənməsi 6-cı fəsildə
throw və try təlimatlarının təsviri zamanı izah olunur.) Hər bir xəta obyekti
realizasiyadan asılı olaraq özündə xəta barədə məlumatı ehtiva edən message
xüsusiyyəti malikdir. Qabaqcadan müəyyən edilmiş xəta obyektlərinə – Error,
EvalError, RangeError, ReferenceError, SyntaxError, TypeError və
URIError misal göstərmək olar.

3.12. Tiplərin dəyişikliyi

Artıq bütün məlumat tipləri əvvəlki bölmələrdə müzakirə edilib. Burada biz mövcud
tipdə olan qiymətləri başqa tipin qiymətlərinə necə dəyişdiriləcəyini öyrənəcəyik.
Əsas qayda bundan ibarətdir: əgər bir tipin qiyməti hansısa başqa bir tipin qiymətini
tələb edən kontekstdə istifadə olunursa, JavaScript interpretatoru bu qiyməti
avtomatik dəyişdirməyə çalışır. Məsələn, əgər məntiqi kontekstdə ədəd tipindən
istifadə olunursa, bu ədəd məntiqi tipin qiymətinə uyğun dəyişdiriləcək. Əgər obyekt
sətir kontekstində istifadə olunursa, bu obyekt sətir qiymətinə dəyişdiriləcək. Əgər
sətir ədəd kontekstində istifadə olunursa, JavaScript interpretatoru bu sətiri ədədə

dəyişdirməyə çalışır. Cədvəl 3.4-də tiplərin avtomatik dəyişikliyinin siyahısı
göstərilmişdir.

Cədvəl	3.4	Tiplərin	avtomatik	dəyişikliyi

Qiymətin
tipi

İstifadə	olunduğu	kontekst
Sətir Ədəd MəntiqiObyekt

Qeyri-
müəyyən
qiymət

“undefined”NaN false Error

null “null” 0 false Error

Boş
olmayan
sətir

Olduğu kimi Əgər ədədə
dəyişdirilə
bilmirsə NaN

true Object.String

Boş sətirOlduğu kimi 0 false Object.String

0 “0” Olduğu kimi false Object.Number

NaN “NaN” Olduğu kimi false Object.Number

Infinity “Infinity” Olduğu kimi true Object.Number

-Infinity “-Infinity” Olduğu kimi true Object.Number

İstənilən
digər
ədəd

Ədədin
sətirlə ifadəsi

Olduğu kimi true Object.Number

true “true” 1 Olduğu
kimi

Object.Bollean

false “false” 0 Olduğu
kimi

Object.Bollean

Obyekt toString() valueOf(),
toString()
yaxud NaN

true Olduğu kimi

3.13. Elementarlar məlumat �pləri üçün obyekt-üzlüklər

Daha əvvəlki, fəsildə biz sətirləri müzakirə etdik və onda mən sizin diqqətiniz
çatdırdım ki, bu məlumat tipinin qəribə xüsusiyyəti mövcuddur: sətirlərlə işləmək
üçün obyekt nəsihətlərindən istifadə olunur.6 Məsələn, sətirlərlə tipik əməliyyat bu
cür ola bilər:

var s = "These are the times that try people's souls.";
var last_word = s.substring (s.lastIndexOf (" ") +1, s.length);

Əgər, məlumatınız olmasa, onda elə biləcəksiniz ki, s obyektdir və siz və bu obyektin
xüsusiyyətlərinin qiymətlərini metodlar çağırmaqla oxuyursunuz.
Bu necə olur? Sətirlərdə olan məlumatlar obyektdir yaxud elementar tipdir? Typeof
(5-ci fəsilə baxmaq) operatoru, obyekt tipində sətirləri sətir məlumat tipindən ayıra
bilir. Bəs, niyə görə sətirlərin manipulyasiyası üçün obyekt xüsusiyyətindən istifadə
olunur?
Məsələ orasındadır ki, üç baza məlumat tipinin hər biri üçün uyğun obyekt sini�i
müəyyən edilmişdir. Yəni JavaScript, ədəd, sətir və məntiqi məlumat tipləri
dəstindən əlavə Number, String və Boolean sini�lərini dəstəkləyir. Bu sini�lər baza
məlumat tipləri üçün "üzlük"	təqdim edir. Üzlük	(wrapper)	baza tipi ilə eyni qiymət
ehtiva edir, lakin bundan başqa da özündəqiymətin manipulyasiyasında istifadə
edilən xüsusiyyətlər və metodları müəyyən edir.
JavaScript ustalıqla bir tipi başqa bir tipə dəyişdirə bilər. Biz obyekt kontekstində
sətirdən istifadə etdikdə, yəni sətir xüsusiyyətinə və ya metoduna müraciət etməyə
çalışdıqda, JavaScript-in daxilində sətir qiymətləri üçün obyekt-üzlük yaradılır. String
obyekti baza sətir qiymətinin yerinə istifadə olunur. Obyekt üçün xüsusiyyətlər və
metodlar müəyyən edilmişdir, buna görə də baza tipindəki obyekt konteksində
istifadə olunur
elementar məlumat tipləri üçün üzlük obyekt kontekstində baza tipinin çeniesi.
Əlbəttə ki, bu və başqa baza tipləri və onlara uyğun olan obyekt-üzlüklər bu qayda ilə
işləyir; biz sadəcə obyekt kontekstində sətir tipi qədər digər tiplərlə işləmirik.
Qeyd etmək lazımdır ki, obyekt kontekstində String sətirdən istifadə zamanı,
xüsusiyyətə və ya metoda müvəqqəti girişi təmin etmək üçün yaradılmışdır, təmin
olunmadan sonra bu obyektə ehtiyac duyulmur və buna görə yalnız sistem
tərə�indən istifadə edilir. Fərz edək ki, s – sətirdir və biz aşağıdakı təkli�in köməyilə
sətirin uzunluğunu müəyyən edirik:

var len = s.length;

Burada s sətiri qalır və onun ilkin mənası dəyişmir. length xüsusiyyətinə müraciət
etməyə imkan verən müvəqqəti String obyekti yaradılır sonra isə, s dəyişəninin ilkin
mənasını dəyişmədən bu silinir. Bu sxem sizə zərif və qeyri-təbii, eyni zamanda da
mürəkkəb görünə bilər. Ancaq JavaScript reallaşdırmaları adətət daxili dəyişikliyi çox
effektiv yerinə yetirir və bundan narahat olmağınıza dəyməz.

O� z proqramında String obyektindən istifadə etməklə sistem tərə�indən avtomatik
silinməyəcək daimi obyekti yaratmaq olar. String obyektləri, digər obyektlər kimi
yəni new operatorunun köməyi ilə yaradılır. Məsələn:

var s = "hello world"; // Sətir tipində olan qiymət
var S = new String("Hello World"); // String obyekti

String tipinin S-də yaradılmış obyekt ilə nə etmək olar? Heç nə belə ki, baza tipinə
uyğun olan qiyməti ilə etmək olmaz. Əgər biz typeof operatorundan istifadə
edəcəyiksə, o bizə bildirəcək ki, S – obyektdir və burada sətir qiyməti mövcud deyil,
lakin, biz baza sətir qiyməti ilə String obyektinin qiyməti arasında fərq
görməyəcəyik, çünki, sətirlər tələb olunduqda avtomatik olaraq String obyektlərinə
dəyişdirilir.7 Məlum olur ki, bu əməliyyatın əksi də düzgündür, yəni biz String
obyektindən baza sətir tipinin qiyməti güman edilən yerdə istifadə etdikdə,
JavaScript String obyektini sətirə avtomatik olaraq dəyişdirəcək. Buna görə də, əgər
biz String obyektində + operatorunda istifadə ediriksə, sətirlər bitişdirilməsi
əməliyyatı icra etmək üçün müvəqqəti olaraq, bu obyektin qiyməti baza sətir tipinin
qiyməti olaraq yaradılır:

msg = S + '!';

Nəzərə alın ki, bu üsul təkcə sətir qiymətləri və String obyektləri ilə məhdudlaşmır,
həmçinin ədəd və məntiqi məlumat tiplərinə müva�iq olaraq, Number və Boolean
obyektlərindən istifadə olunur. Bunlar haqqında daha ətra�lı məlumat kitabın III
hissəsində sini�lərə aid məqalələrdə yerləşdirilmişdir. Nəhayət, qeyd etmək lazımdır
ki, istənilən sətir, ədəd və ya məntiqi qiymətlər Object() funksiyasının köməyi ilə
uyğun olan obyekt-üzlüyə dəyişdirilə bilər:

var number_wrapper = Object(3);

3.14. Obyektlərin elementar �plərdə olan qiymətlərə
dəyişikliyi

3.5.3. bölməsində qeyd edildiyi kimi obyektlər adətən elementar tipdə olan
qiymətlərə kifayət qədər dəyişdiriləcək düzxətli üsul ilə dəyişdiriləcək. Lakin
obyektlərin dəyişikliyi mürəkkəbdir.8

Hər şeydən əvvəl qeyd etmək lazımdır ki, tam obyektləri məntiqi qiymətlərə
dəyişiklirdikdə, true qiyməti alır. Bu istənilən obyektlər (massivlər və funksiyalar da
daxil olmaqla) hətta obyekt-üzlüklər üçün də ədalətlidir. Obyekt-üzlüklər elementar
tiplər ilə, dəyişildikdə, false qiymətini alır. Məsələn, aşağıda göstərilən bütün
obyektləri məntiqi kontekstə istifadə edərkən true qiymətinə malik olur:

new Boolean(false) //Daxili qiymət – false, amma obyekt true-a dəyişdiriləcək

new Number(0)
new String("")
new Array()

Cədvəldə. 3.3-də obyektlərdə valueOf() metodu çağırılarkən obyektin ədəd
dəyişikliyi sırası göstərilmişdir. Obyektlərin əksəriyyəti gizli olaraq Object sini�inin
baza obyekti olan və qiymət olaraq obyektin özünü qaytaran valueOf() metoduna
varis olur. Bir halda ki, susmaya görə olan valueOf() metodu elementar tipdə olan
qiyməti qaytamırsa, onda JavaScript interpretatoru bu obyekt-ədəd dəyişiklikliyini
toString() metodunun köməyilə etməyə çalışır və sonda sətir ədəd dəyişikliyi baş
verir.
Massivlər halında bu olduqca maraqlı nəticələrə gətirir. Massivlərdə toString()
metodu massivin elementlərini sətirlərə dəyişdirəcək və massivin ayrı-ayrı
elementlərini vergüllərlə ayırır. Son nəticədə sətirlərin bitişdirilməsi əməliyyatı
alınır. Əgər, boş massiv boş sətirə dəyişdiriləcəksə, nəticədə 0 ədədi alınır! Bundan
başqa, əgər element olaraq n ədədini ehtiva edən massiv təkelementlidirsə, onda
bütün massiv n ədədini ehtiva edən sətirə dəyişdiriləcək və bundan sonra sətir-ədəd
dəyişikliyi aparılacaq. Əgər massiv birdən çox təkelementlidirsə və ya massivin tək
elementi ədəd deyilsə, dəyişikliyin nəticəsi NaN qiyməti olacaq.
Dəyişikliyin tipi dəyişikliyin edildiyi kontekstdən asılıdır. Elə vəziyyətlər də olur ki,
birmənalı olaraq konteksti müəyyən etmək mümkün olmur. + operatoru və müqayisə
(<=, > və >=) operatorları eyni zamanda həm ədəd, həm sətir, həm də obyekt arasında
əməliyyat apararsa, çoxmənalılıq yaranır və belə bir təzadlı sual meydana çıxır:
obyektin qiymətini hansı tipdə olan qiymətə – sətirə və ya ədədə dəyişmək lazımdır?
Çox zaman JavaScript əvvəlcə obyekti valueOf() metodunun köməyi ilə
dəyişdirməyə çalışır. Əgər bu metod elementar tipin (bir qayda olaraq, ədədin)
qiymətini qaytarırsa, onda bu qiymət istifadə olunur. Ancaq əksər hallarda
valueOf() metodu dəyişdirilməyən obyektin özünü qaytarır. Bu halda JavaScript
interpretatoru obyekti sətirə toString() metodunun çağırılması ilə dəyişdirməyə
çalışır.
Ancaq burada bir istisna var: + operatoru Date obyekti ilə istifadə olunduqda,
dəyişiklik birbaşa toString() metodunun çağırışı ilə başlanır. Bu istisna ona
görədir ki, Date obyekti toString() və valueOf() metodlarının şəxsi
reallaşdırmalarına malikdir. Ancaq, Date obyekti + operator ilə göstərildikdə, əksər
hallarda sətirlərin bitişdirilməsi əməliyyatı nəzərdə tutulur və müqayisə
əməliyyatının icra edilməsi zamanı praktik olaraq həmişə iki tarixdən hansının daha
erkən olduğunu müəyyən etmək tələb olunur.
Obyektlərin əksəriyyəti valueOf() metoduna malik deyil və ya bu metod tələb
edilən elementar tipin qiyməti qaytarmır. Obyekt + operator ilə istifadə olunduqda,
adətən sətirlərin bitişdirilməsi, ədədlərin isə toplanması əməliyyatı yerinə yerinə
yetirilir. Analoji olaraq, obyekt müqayisə əməliyyatlarında iştirak etdikdə, adətən
ədəd qiymətlərinin deyil, sətir qiymətlərinin müqayisəsi aparılır. Şəxsi
reallaşdırmasında ValueOf() metodu olan obyektlər bu vəziyyətdə özünü başqa cür

apara bilər. Əgər siz valueOf() metodunu yenidən təyin edəcəksinizsə ki, o sayı
qaytarsın, obyektin üstündə hesabları yerinə yetirmək mümkün olacaq və başqa say
əməliyyatları, amma sətirlə obyektin toplanmasının əməliyyatı arzu oluna
Nəhayət, yadda saxlamaq lazımdır ki, valueOf() metodu toNumber() metodunu
çağırmır. Daha dəqiq desək, bu metodun təyinatı ondan ibarətdir ki, obyekti
elementar tipin səmərəli qiymətinə dəyişdirsin; bu səbəbdən də bəzu obyektlərdə
valueOf() metodları sətir qiymətini qaytarır.

3.15. Qiymət və ya is�nad üzrə

JavaScript-də, başqa proqramlaşdırma dillərində olduğu kimi məlumatı üç üsul ilə
manipulyasiya etmək mümkündür, Birinci üsul – məlumatların kopyalamasıdır.
Məsələn, qiymətə yeni dəyişən mənimsəmək olar. I�kinci üsul – funksiyaya və ya
metoda qiymət təyin etmək. U� çüncü – bu qiymətləri digər qiymətləri digər qiymətlər
ilə müqayisə edərək, onların bərabərliyinin yoxlanılması. Proqramlaşdırma dilin
tamamilə başa düşmək üçün bu üç təsirin yerinə yetirilmə necəliyini tam başa
düşmək lazımdır.
Məlumatlar manipulyasiya etməyin iki fundamental üsulu mövcuddur: qiymət	 üzrə,
istinad	 üzrə. Qiymət ölçüsü üzrə yerinə yetirilən manipulyasi onu bildirir ki,
əməliyyatda məhz bu qiymət ölçüsü iştirak edir. Mənimsəmə əməliyyatında faktiki
qiymətin surəti yaradılır, sonra bu surət dəyişlikliyə məruz qalarsa, obyektin
xüsusiyyətində və ya massivin elementində saxlanılır. Surət və orijinal – iki tamamilə
müstəqil, ayrı-ayrı saxlanılan dost qiymətdir. Funksiyaya bəzi qiymət ölçüsü üzrə
ötürülmə baş verərsə, bu onu bildirir ki, funksiyalara surət ötürülür. Əgər funksiya
alınmış qiyməti dəyişdirəcəksə, bu dəyişikliklər yalnız surətə təsir edəcək və heç
vaxt orijinal toxunulmayacaqdır. Nəhayət, bir qiymət ölçüsünün, digər bir qiymət
ölçüsü ilə müqayisəsi aparıldıqda, iki müxtəlif məlumat dəstindən birini özündə
saxlamalıdır (bu adətən ölçülərin ekvivalentliyinin yoxlanılması üçün onların
baytlarının müqayisəsi edilməsini nəzərdə tutur).
Manipulyasiya etmənin başqa bir üsulu – istinad üzrə. Bu halda qiymətin yalnız bir
faktiki surəti mövcuddur və manipulyasiya etmə bunu istinadlar vasitəsi ilə
qiymətlərə ötürülür.9 Qiymətlərlə hər hansı təsir istinad üzrə edildikdə, dəyişənlər
qiymət ehtiva etmir və dəyişənlərə qiymət yalnız istinadlar vasitəsilə ötürülur. Məhz
bu istinad informasiyası müqayisə əməliyyatlarında yamsılanır, ötürülür və iştirak
edir. Beləliklə, istinad üzrə mənimsəmə əməliyyatında qiymət və ya qiymətin surəti
deyil istinadın özü iştirak edir. I�stənilən qiymət mənimsədilməsi qiymətə istinad
edən dəyişən və qiymətin mənimsədildiyi orijinal dəyişənə şamil olacaq.
Hər iki istinad tamamilə bərabər hüquqlu hesab edilir və qiymətləri eyni dərəcədə
manipulyasiya etməyi bacarır. Əgər bir istinadın köməyi ilə qiymət dəyişirsə, bu
dəyişikliklər başqa istinadlar köməyi ilə də müşahidə olunur. Funksiyaya istinad üzrə
ötürülmə qiymət ölçüsü üzrə ötürülmə analojidir. Qiymət funksiyaya qiymətə istinad

üzrə ötürüldükdə, funksiya bu qiymətdən özünün dəyişikliklərində istifadə edə bilər.
I�stənilən bu cür dəyişikliklər üçün funksiyanın hüdudları görülür. Nəhayət, istinad
üzrə müqayisə əməliyyatı yerinə yetirildikdə, iki istinadın eyni qiymətə istinadını
yoxlamaq üçün bu istinadların müqayisəsi aparılır. I�ki müxtəlif qiymətə istinad edən
ekvivalent istinadlar belə, bərabər hesab edilə bilmirlər. Bunlar dəyişənə qiymət
manipulyasiyanın tamamilə müxtəlif üsullarıdır və bunları mükəmməl anlamaq
lazımdır. Cədvəldə. 3.4-də yuxarıda göstərilənlərin qısa təsviri təqdim edilmişdir. Bu
bölmədə manipulyasiya barədə olan məlumatlar proqramlaşdırma dilləri üçün
ümumi xarakter daşıyır. Növbəti bölmələrdə JavaScript-də məxsus xüsusi fərqlərə
baxılacaq. Yəni, hansı məlumat tipində qiymət üzrə, hansında isə, istinad üzrə
manipulyasiya etmək lazım olduğu göstəriləcək.

Cədvəl	3.4.	İstinad	üzrə	və	qiymət	üzrə

 Qiymət	üzrə İstinad	üzrə
KopyalamaInfinity Yalnız qiymət istinad

yamsılanır. Əgər qiymət
istinad surətinin köməyi ilə
dəyişdiriləcəksə, bu
dəyişikliklər orijinal
istinaddan istifadə zamanı
müşahidə olunacaq.

O� türülmə Funksiyanın
ötürülməsi qiy-mətin
ayrı-ayrı surətlərinin
ötürülməsi hesabına
baş verir. Bu surət
dəyişikliyi funksiya
xaricində heç bir
qiymətə təsir
göstərmir.

Funksiyalar qiymətə
istinad vasitəsilə ötürü-lür.
Əgər funksiyanın daxilində
qiymət, alınmış istinadın
köməyi ilə
dəyişdiriləcəksə, bu
dəyişikliklər funksiyanın
hüdudları da-xilində
müşahidə olunacaq.

Müqayisə I�ki müxtəlif müqayisə
Qiymətlərin (adətən
baytlı), bərabər olduğu

. I�ki istinad, müqayisə
edilir, eyni qiymətə istinad
etdiyi müəyyən etmək üçün
müqayisə edilir. Müxtəlif

müəyyən etmək üçün
müqayisə aparılır

qiymətlərə istinad
edənlərin bərabər
olmaması aydın məsələdir
lakin, hətta qiymətlər
tamamilə eynidirsə belə bu
istinadlar

3.15.1. Elementar və sitat �pləri

JavaScript-in əsas qaydası aşağıdakı qaydadır: elementar tiplər üzərində aparılan
əməliyyatlar qiymət üzrə yaradılır, lakin sitat tiplərində aparılan əməliyyatlar adına
uyğun olaraq, istinad üzrə aparılır.
Ədədlər və məntiqi ölçülər – JavaScript-də elementar tiplərdir. Bunlar ona görə
elementar tiplərə aid edilir ki, bu tiplərin malik olduqları baytların sayı kiçikdir, buna
görə də, bu tiplər ilə yüngül əməliyyatlar aparmaq mümkündür bu əməliyyatlar
JavaScript-in aşağı səviyyəli interpretatoru tərə�indən yerinə yetirilir. Obyektlər sitat
tiplərinin bir nümayəndəsidir. Həmçinin, massivlər və funksiyalar – ixtisaslaşdırılmış
obyekt tipləri olduğuna görə onlar da sitat tipindədir. Bu məlumat tipləri
xüsusiyyətlərin və ya elementlərin sərbəst sayından ibarət ola bilər, buna görə
sadəcə belə onlarla əməliyyat etməyə bilərlər, bərkidilmiş ölçülərə malik olan
elementar tiplərin qiymətləri (mənaları) kimi. Bir halda ki, massivlərin və
obyektlərin ölçüləri fövqəladə böyük ola bilər, onların üzərində qiymət üzrə aparılan
əməliyyatlar sübutsuz kopyalanmaya və nəhəng yaddaşın həcminin müqayisəsinə
gətirib çıxara bilər.
Bəs sətirlərdə? Sətirlər sərbəst uzunluğa malik ola bilər, buna görə onlara sitat tipi
kimi baxmaq olar. Bununla belə sətirin JavaScript-də adətən sətirlərə elementar tip
kimi baxılır, ona görə ki, onlar obyekt deyil. Həqiqətdə sətirlər ikipolyar elementar
yolla-sitat tipinə aid edilmir.
Məlumatların arasında fərqi anlamaq üçün ən yaxşı üsul, istinad üzrə və qiymət üzrə
aparılan əməliyyatların, praktik nümunələrinin öyrənilməsindən ibarətdir. Aşağıdakı
nümunəyə nəzər yetirin və xüsusilə şərhlərə diqqət yetirin. Nümunə 3.1-də
kopyalama, ötürülmə və ədədlərin müqayisəsi əməliyyatları yerinə yetirilir. Bir halda
ki, ədədlər elementar tipdədir, verilmiş nümunə qiymət üzrə yerinə yetirilən
əməliyyatların illüstrasiyasıdır.

Nümunə	3.1.	Kopyalama,	ötürülmə	və	qiymət	üzrə	ölçülərin	müqayisəsi

// Qiymət üzrə kopyalanma əməliyyatında birinci mərhələ

var n = 1; // n dəyişəni 1-qiymətini ehtiva edir
var m = n; // Qiymət üzrə kopyalama: başqa bir dəyişən, m dəyişəni də 1

// qiymətini ehtiva edir.
// Bu funksiyadan qiymət üzrə ölçünün ötürülməsi əməliyyatının
// illüstrasiyası üçün istifadə olunur.
// Şahidi olacaqsınız ki, bu tip funksiya istənilən qaydada
// işləmir

function add_to_total(total, x)
{
total = total + x; // Bu sətir yalnız total-ın daxili surətini dəyişdirir

}

// İndi n və m dəyişənlərində olan ədədlər qiyməti üzrə ötürülən funksiyaya
// daxil edilir
// Funksiyanın daxilində olan n dəyişəninin qiymətinin surəti total adında da
// əlçatandır. Funksiya m və n dəyişənlərinin qiymətlərinin surətlərini
// yaradır və nəticəni n dəyişəninin qiymətinin surətinə yazır. Ancaq bu
// funksiya xaricində olan n dəyişəninin orijinal qiymətinə heç bir təsir
// göstərmir.Beləliklə, bu funksiyanın çağırışı nəticəsində heç bir dəyişiklik
// hasil olunmur.
add_to_total(n, m);

// İndi biz qiymət üzrə müqayisə əməliyyatını yoxlayacağıq.
// Proqramın aşağıdakı sətirində 1 literalı proqramın mətninə mükəmməl
// "qurulmuş" müstəqil ədəd qiymətidir
// Biz indi n dəyişəninin ehtiva etdiyi qiyməti müqayisə edirik
// İndiki halda, iki ədədin bərabərliyindən əmin olmaq, baytlar üzrə müqayisə
// əməliyyatı yerinə yetirilir.
if (n == 1) m = 2; // n dəyişəni həminki 1 literalını ehtiva edir;

 // beləliklə m dəyişəninə isə 2 qiyməti yazılacaq

I�ndi nümunə 3.2-ə baxacağıq. Kopyalanma, ötürülmə və müqayisə əməliyyatlarının
bu nümunəsi obyektlərin üzərində həyata keçirilir. Çünki, obyektlər sitat tiplərinə
aiddir və onların üzərində aparılan bütün əməliyyatlar istinad üzrə edilir. Bu
nümunədə Date obyektindən istifadə edilmişdir, bu haqda daha ətra�lı kitabın üçüncü
hissəsində oxumaq olar.

Nümunə	3.2. Kopyalanma,	ötürülmə	və	istinad	üzrə	ölçülərin	müqayisəsi

// Burada Miladi təqviminə uyğun 2007-ci il tarixli obyekt yaradılır
// xmas dəyişəni obyektə istinad əlavə edir və lakin özü obyekt deyil

var xmas = new Date(2007, 11, 25);
// Sonra bu istinadın kopyalanması əməliyyatı yerinə yetirilir, yəni orijinal
// obyektə ikinci istinad alınır

var solstice = xmas;

// Hər iki dəyişən ən birinci obyektə istinad edir
// Burada yeni istinadın köməyilə obyekt dəyişikliyi yerinə yetirilir

solstice.setDate(21); // Dəyişiklikləri birinci istinaddan istifadə zamanı

 // müşahidə
xmas.getDate(); // ilkin qiyməti (25) deyil, 21 qiyməti qaytarılır

// Həminki funksiya obyektlərin və massivlərin ötürülməsi zamanı baş verir.
// Aşağıdakı funksiya massivin bütün elementlərinin qiymətləri ilə işləyir.
// Funksiyalar massivə istinad vasitəsilə ötürülür, lakin massivin surəti
// olmur. Bunun sayəsində funksiya verilmiş istinad üzrə massivin tərkibini
// dəyişdirə bilər. Bu dəyişiklikləri funksiyadan qaytarılmadan sonra
// görüləcək.

function add_to_totals (totals, x)
{

totals [0] = totals [0] + x;
totals [1] = totals [1] + x;
totals [2] = totals [2] + x;

}
// Nəhayət, sonra istinad üzrə müqayisə əməliyyatı yerinə yetirilir.
// Yaradılmış iki dəyişənin, müqayisəsi zamanı ilk öncə onların
// ekvivalentliliyi yoxlanılır, sonra isə baytlar üzrə müqayisə aparılır
// müəyyən olur, bununla belə, tarix dəyişikliyi onlardan yalnız birinə görə
// aparılır:

(xmas == solstice) // true qiymətini qaytarır

// Bir-birindən daha gec yaradılmış iki dəyişən eyni tarixi ehtiva etsə belə,
// müxtəlif obyektlərə istinad edir.

var xmas = new Date(2007, 11, 25);
var solstice_plus_4 = new Date(2007, 11, 25);
// Amma müxtəlif obyektlərə istinad, müəyyən olunmuş "istinad üzrə
// müqayisələr"qaydasına əsasən ekvivalent hesab edilmir!

(xmas! = solstice_plus_4) // true qiymətini qaytarır

Obyektlərin üzərində əməliyyatların icra edilməsi mövzusunun müzakirəsini
bitirməzdən əvvəl, istinad üzrə massivlərə mövzusuna bir az aydınlıq gətirək.
"I�stinad üzrə ötürülmə" ifadəsi bir neçə mənaya malik ola bilər. Bəziləriniz üçün bu
ifadə funksiya çağırışının bu cür üsulunu (funksiyanın daxilində bu qiymətləri
dəyişdirməyə imkan verən və onun hüdudları xaricində bu dəyişiklikləri müşahidə
edən) bildirir. Ancaq bu termin bu kitabda bir qədər başqa mənada izah edilir. Burada
sadəcə, funksiyaların massivə və ya obyektə istinad üzrə ötürüldüyü, lakin özünün
obyekt olmadığı nəzərdə tutulur. Funksiya bu istinadın köməyilə obyektin
xüsusiyyətlərini və ya massivin elementlərini dəyişdirməyə imkan verir və bu
dəyişikliklər funksiyadan çıxışında saxlanılır. Bu terminin başqa izahları ilə tanış
olanlar, deyə bilər ki, obyektlər və massivlər qiymət üzrə ötürülür, düzdür, bu qiymət
ilə faktiki olaraq obyektə istinad olunur və istinadın özü obyekt olmur. Nümunə 3.3
bu problemi əyani təsvir edir.

Nümunə	3.3.	İstinadlar	qiymət	üzrə	ötürülür

// Burada add_to_totals() funksiyasının başqa versiyası işlədilir. Hərçənd o
// işləmir,çünki massivin özünün dəyişikliyinin yerinə o bu massivə istinadı
// dəyişdirir.

function add_to_totals2(totals, x)
{

newtotals = new Array(3);
newtotals[0] = totals[0] + x;
newtotals[1] = totals[1] + x;
newtotals[2] = totals[2] + x;
totals = newtotals; // Bu sətir funksiya xaricində olan massivə təsir

 // göstərmir
}

3.15.2. Kopyalanma və sə�rlərin ötürülməsi

Daha əvvəl deyildiyi kimi, sətirlər ikiqatpolyar elementar tipdir lakin istinad tipinə
aid edilmir. Bir halda ki, sətirlər obyekt deyil, onları elementar tipə aid olduğunu fərz
etmək tamamilə təbiidir. Əgər sətirlərə elementar məlumat tipi kimi baxılacaqsa,
əvvəlki bölmədə deyilənlərə uyğun olaraq onların üzərində əməliyyatlar qiymət üzrə
aparılmalıdır. Amma bir halda ki, sətirlər ixtiyari uzunluğa malik ola bilər, bu
kopyalama əməliyyatında və baytlar üzrə müqayisədə sistem resurslarının qeyri-
məhsuldar xərcləməsinə gətirə bilər. Beləliklə, tamamilə olmasa da sətirlərin sitat
məlumat tipi kimi realizasiyasını fərz etmək olar.
Fərziyyələr qurmaq əvəzinə, JavaScript dilində kiçik fraqment yazaraq, problemi bu
yolla eksperimental həll etməyə cəhd etmək olar. Əgər sətirlər istinad üzrə
kopyalanırsa və ötürülürsə, başqa dəyişəndə saxlanılan istinadın köməyilə və ya
funksiyaya sətirin ötürülməsi nəticəsində onların tərkibini dəyişdirmək mümkün
olmalıdır. Ancaq siz bunu təcrübədən kecirmək üçün kod yazdığınızda ciddi
problemlə rastlaşacaqsınız: JavaScript-də sətirin tərkibini dəyişdirmək mümkün
deyil. Verilmiş simvolun sətirdəki mövqesini qaytaran CharAt() metodu mövcuddur,
amma bu mövqeyə başqa simvolu daxil etməyə imkan verən setCharAt() metodu
yoxdur. Bu səhv deyil. JavaScript-də sətirlər dəyişilməzdir. Çünki JavaScript-in sətir
simvollarını dəyişdirmək imkanı yaradan elementləri yoxdur.
Bir halda ki, sətirlər dəyişilməzdir, onda belə nəticə çıxır ki, sətirlərin qiymət üzrə və
ya istinad üzrə ötürüldüyünü yoxlamaq mümkün deyil. Fərz etmək olar ki,
effektivliyin artırılması məqsədi ilə JavaScript interpretatoru belə reallaşdırılmışdır
ki, sətirlər istinad üzrə ötürülsün, amma bu həm də yalnız fərziyyə olaraq qalır, çünki,
JavaScript-in bu sahədə imkanları məhduddur.

3.15.3. Sə�rlərin müqayisəsi

Sətirlərin qiymət üzrə, yaxud istinad üzrə kopyalanmasını müəyyən etmək mümkün
olmasa da , aşağıdakı fraqmenti yazaraq, JavaScript-də sətirlərin qiymət üzrə, yaxud
istinad üzrə müqayisə edildiyini müəyyən etmək olar. Nümunə	 3.4-də bu cür
yoxlamanı yerinə yetirən fraqment göstərilib.
Nümunə	3.4. Görəsən, sətirlər istinad üzrə yaxud qiymət üzrə müqayisə edilir?

// Sətirlərin istinad yaxuddakı qiymət üzrə müqayisə ediləcəyini müəyyən
// etmək, kifayət qədər sadədir. Burada eyni simvolların ardıcıllıqlarını
// ehtiva edən tamamilə müxtəlif sətirlər müqayisə edilir
// Əgər qiymət üzrə müqayisə yerinə yetirilirsə
// onlar ekvivalent kimi təfsir edilməlidir, əgər
// istinad üzrə müqayisə yerinə yetirilərsə, nəticə əksi olmalıdır:

var s1 = "hello";
var s2 = "hell" + "o";
if (s1 == s2) document.write ("Sətirlər qiymət üzrə müqayisə edilir")

Bu sınaq sübut edir ki, sətirlər qiymət üzrə müqayisə edilir. Bu, C, C++ və Java ilə
işləyən bəzi proqramçılar üçün sürpriz ola bilər, yəni, sətirlər sitat tiplərinə aiddir və
istinad üzrə müqayisə edilir. Zəruri olduqda bu dillərdə sətirlərin faktiki tərkibi
müqayisə etmək üçün xüsusi metodlardan və ya funksiyalardan istifadə etmək lazım
gəlir. JavaScript dili yüksək səviyyəli dillərə aiddir və buna görə güman edilir ki,
sətirlərin müqayisəsi yerinə yetirildikdə, ehtimal ki, qiymət üzrə müqayisə nəzərdə
tutulur. Baxmayaraq ki, JavaScript-də effektivliyinin artırılması məqsədilə, sətirlər
istinad üzrə yamsılanırlar və ötürülürlər, bununla belə müqayisə əməliyyatı qiymət
üzrə yerinə yetirilir.

3.15.4. İs�nad üzrə və ya qiymət üzrə: yekunlaşdırma

Cədvəl	 3.5-də JavaScript-də müxtəlif məlumat tiplərinin üzərində əməliyyatlar
yerinə yetirməsinin qısa təsviri verilmişdir.

Cədvəl	3.5.	JavaScript-də	məlumat	tiplərinin	üzərində	əməliyyatlar

Tip Kopyalanma Ötürülmə Müqayisə
Ədəd Qiymət üzrə Qiymət üzrə Qiymət üzrə
Məntiqi
qiymət

Qiymət üzrə Qiymət üzrə Qiymət üzrə

Obyekt I�stinad üzrə I�stinad üzrə I�stinad üzrə
Sətir I�stinad üzrə I�stinad üzrə I�stinad üzrə

4
Dəyişənlər

Dəyişən – qiymətlə ifadə olunan addır. Yəni, dəyişən hər hansı bir qiymət ehtiva
edir. Dəyişənlər məlumatları proqramda saxlamağa və bu məlumatlarla işləməyə
imkan verir. Məsələn, aşağıdakı JavaScript-kodunda i adında olan dəyişənə 2
qiyməti mənimsədilir:
i = 2;

Aşağıdakı kodda isə, növbəti i dəyişəninə 3 qiyməti əlavə edilir və yeni dəyişənə
sum nəticəsini mənimsədilir:

var sum = i + 3;

Bu demək olar ki, bütün dəyişənlər haqqında ilkin təsəvvürü formalaşdırır. Amma
JavaScript-də dəyişənlərin işinin mexanizmini tam anlamaq üçün bu iki sətir kod
ilə kifayətlənməmək, başqa anlayışları da öyrənmək lazımdır. Bu fəsildə
tipləşdirmə, elanlar, görünmə sahələri, tərkib və dəyişən adlarının təyini,
həmçinin tullantı tənzimləmələri və "dəyişən/xüsusiyyət"10 anlayışının
müxtəli�likləri məsələlərinə toxunalacaq.

4.1. Dəyişənlərin �pləşdirməsi

JavaScript-in Java və C kimi və digər bu tip proqramlaşdırma dillərindən əsas
fərqi ondan ibarətdir ki, JavaScript – tipləşdirilməmiş	(untyped) dildir. Xüsusi
halda, bu o deməkdir ki, JavaScript, Java və C ailəsinə yaxın PD-lərdər fərqli
olaraq, dəyişənin elanı zamanı dəyişənin ehtiva edəcəyi məlumat tipi
göstərilmədən, bu dəyişən istənilən tipdə olan qiyməti ehtiva edə bilər. Məsələn,
JavaScript-də məlumat tipi göstərilmədən dəyişənə əvvəlcə ədəd tipində sonra
isə, sətir tipində olan qiymət mənimsətmək olar:

i = 10;

i = "on";

Java, C, C++ və digər istənilən ciddi tipləşdirilmiş dildə belə kod yolverilməzdir.

Tipləşdirmənin yoxluğu JavaScript-ə axıcılıq xüsusiyyəti yaradır və bu dil ehtiyac
olduğu halda qiymətləri bir tipdən digər bir tipə avtomatik dəyişdirəcək qədər
sadədir. Məsələn, əgər siz sətirə tipinə ədəd tipində olan qiymət yazmaq
istəyirsinizsə, JavaScript uyğun olan sətiri ədədə avtomatik dəyişdirəcək.
Tiplərin dəyişiklikləri barədə daha ətra�lı 3-cü fəsildə danışılır. JavaScript dilinin
tipləşdirilməmiş xüsusiyyəti, tipləşdirilmiş dillər (C, C++, Java və s.) ilə
müqayisədə bu dilinin sadəliyini bildirir. Eyni zamanda bir çox JavaScript-
proqramları qısa ssenariləri təşkil olunur, buna görə də belə ciddi tip
xüsusiyyətinə ehtiyac yoxdur və adətən bu dildə işləyən proqramçılar daha sadə
sintaksisin üstünlük verirlər.

4.2. Dəyişənlərin elan edilməsi

JavaScript-də dəyişəndən istifadə etməzdən əvvəl, onu elan	etmək11	lazımdır.
Dəyişənlər aşağıdakı qaydada var açar sözünün köməyilə elan edilir:

var i;

var sum;

Bir neçə dəyişən elan etmək olar:

var i, sum;

Bundan başqa, dəyişənin elanını onun inisializasiyası ilə birləşdirmək olar:

var message = "hello";

var i = 0, j = 0, k = 0;

Əgər var təlimatında ilk məna verilməmişdirsə, onda dəyişən elan edilir, amma
onun ilk mənası qeyri- müəyyən (undefined) qalır. Nəzərinizə çatdıraq ki, var
təlimatı həmçinin for və for/in dövrlərinə (bu barədə 6-cı fəsildə daha ətra�lı
danışılır) qoşula bilər, yəni bilavasitə dövrün özündə dəyişənini dövr elan etməyə
imkan verir. Məsələn:

for (var i = 0; i<10; i++) document.write(i, "</br>");

for (var i = 0, j = 10; i<10; i++, j--) document.write(i*j, "</br>");

for (var i in o) document.write(i, "</br>");

var təlimatının köməyilə elan edilmiş dəyişənlər, “uzunömürlü” (permanent)
olur: (onları delete operatorunun köməyilə silmək cəhdi səhvə gətirib çıxaracaq.
(delete operatoru ilə 5-ci fəsildə tanış olacaqsınız.)

4.2.1. Təkrar və "unudulmuş" elanlar

var təlimatının köməyilə eyni anda bir neçə dəyişəni elan etmək olar. Əgər təkrar
elan edilmiş dəyişən, inisializator ehtiva edirsə, onda o adi mənimsəmə təlimatı
kimi davranır.
Əgər elan edilməyən dəyişənin qiymətini oxumağa çalışsaq, JavaScript xəta
barədə məlumat yaradacaq. Əgər var təlimatının köməyilə elan edilməyən
dəyişənə qiymət mənimsətsək, JavaScript sizin üçün bu dəyişəni gizli olaraq özü
elan edəcək. Ancaq belə dəyişənlər, hər bir halda, hətta funksiyanın gövdəsində
belə, qlobal dəyişən kimi elan edilir. Lakin funksiya üçün qlobal dəyişənlərdən
istifadə məsləhət görülmür, çünki bu proqramda ad fəzasının dolmasına gətirib
çıxarır. Ona görə də, funksiyanın gövdəsində var təlimatının köməyilə lokal
dəyişənlərin elan edilməsi birmənalı olaraq məsləhət görülür. U� mumiyyətlə isə,
görünmə sahəsindən asılı olmayaraq bütün dəyişənləri var açar sözü ilə elan
etmək qəti şəkildə məsləhət görülür.

4.3. Dəyişənin görünmə sahəsi

Dəyişənin görünmə sahəsi (scope) – dəyişən müəyyən edilmiş proqram
hissəsidir.
Qlobal	 dəyişən bütün JavaScript-proqramı üçün müəyyən edilmiş qlobal
görünmə sahəsinə malikdir. Funksiyanın daxilində elan edilmiş dəyişənlər, yalnız
funksiyanın gövdəsində müəyyən edilmişdir. Bu tip dəyişənlər lokal dəyişənlər
adlandırılır və lokal görünmə sahəsinə malikdirlər.
Həmçinin, funksiyaların parametrləri yalnız bu funksiyanın gövdəsi daxilində
müəyyən edilmiş lokal	dəyişən hesab edilir. Funksiyanın gövdəsi daxilində lokal
dəyişən eyni adlı qlobal dəyişəndən prioritet cəhətdən üstündür. Əgər lokal
dəyişənin adı, qlobal dəyişənin adı ilə eyni elan edilibsə, faktiki olaraq qlobal
dəyişən gizlədiləcək. Bunu aşağıdakı nümunə kod ilə belə göstərmək olar:

var scope = "qlobal"; // Qlobal dəyişənin elan edilməsi
function checkscope()
{

var scope = "lokal"; // Eyni adlı lokal dəyişənin elan edilməsi
document.write(scope) ; // Lokal dəyişəndən istifadə olunur.

}
checkscope(); // ekranda "lokal" sözü yazılır

Qlobal görünmə sahəsi ilə dəyişənləri elan edəndə, var təlimatını ixtisar etmək
olar, lakin lokal dəyişənlərin elanı zamanı var təlimatından istifadə etmək

mütləqdir. Aşağıdakı nümunəyə baxaq:

scope = "qlobal"; // hətta "var"-sız qlobal dəyişənin elan
 // edilməsi

function checkscope()
{

scope = "lokal"; // Oy! Biz indi qlobal dəyişəni dəyişdirdik
document.write(scope); // Qlobal dəyişən istifadə olunur
myscope = "lokal"; // Burada biz gizli yeni qlobal dəyişəni elan

 // edirik
document.write(myscope) ; // Yeni qlobal dəyişən istifadə olunur

}

checkscope(); // Ekranda "lokallokal" birləşməsi yazılır
document.write(scope) ; // Ekranda "lokal" sözü yazılır
document.write(myscope) ; // Ekranda "lokal" sözü yazılır

Funksiyalar, bir qayda olaraq, dəyişənlərin hansı görünmə sahələrində elan
edildiyini və ya dəyişənin hansı məqsədlə istifadə edildiyini bilmir. Buna görə də
funksiya lokal və qlobal dəyişəndən birlikdə istifadə edir və proqramın
funksiyadan kənar digər hissəsində lazım olan dəyişənin qiymətini dəyişdirməyə
risk edir. Xoşbəxtlikdən, bu xoşagəlməz hadisədən qaçmaq asandır: bunun üçün
sadəcə olaraq, bütün dəyişənləri var təlimatının köməyi ilə elan edin.
Funksiyaların daxilində də funksiya təyin edilə bilər. Hər bir funksiya şəxsi lokal
görünmə sahəsinə malikdir, buna görə də lokal görünmə sahələrinin bir neçə
daxili səviyyəsi ola bilər. Məsələn:

var scope = "qlobal görünmə sahəsi"; // Qlobal dəyişən
function checkscope()
{

var scope = "lokal görünmə sahəsi"; // Lokal dəyişən
function nested()
{

var scope = "daxili görünmə sahəsi"; // Daxili görünmə sahəsində
 // lokal dəyişənlər

document.write(scope) ; // "daxili görünmə sahəsi"
 // yazılır

}
nested();

}
checkscope();

4.3.1. Blok görünmə sahəsinin yoxluğu
Nəzərə alın ki, C, C ++ və Java-dan fərqli olaraq, JavaScript-də bloklar
səviyyəsində görünmə sahələri mövcud deyil. Funksiyanın daxilində olan və elan
edilmə necəliyindən asılı olmayaraq bütün dəyişənlər funksiyanın daxilində

müəyyən edilir. Aşağıdakı kodda i, j və k dəyişənləri eyni görünmə sahələrinə
malikdir: üç dəyişənın hamısı bütün funksiya gövdəsində müəyyən edilmişdir. Bu
cür kod C, C++ və ya Java yazıla bilməz:

function test(o)
{

var i = 0; //i bütün funksiyada müəyyən edilmişdir
if (typeof o == "object")
{

var j = 0; //j tək blokda deyil, hər yerdə müəyyən edilmişdir
for (var k = 0; k > 10; k ++)
{ // k tək dövrdə deyil hər yerdə müəyyən edilmişdir

document.write(k);
}
document.write(k); //k dəyişənindən hələ də istifadə etmək olar:

 //10 yazılır
}
document.write(j); //j müəyyən edilmişdir, lakin inisializasiya
 //edilməmiş ola bilər

}

Funksiyada elan edilmiş dəyişənlərin belə davranışı təəccüblü nəticələrə gətirib
çıxara bilər. Məsələn:

var scope = "qlobal";
function f()
{

alert(scope); // "undefined" və "qlobal olmayan " yazılır.
var scope = "lokal"; // Dəyişən burada inisializasiya olunur, amma yalnız

 // funksiyanın daxilində müəyyən edilmişdir.
alert(scope); // "lokal" göstərir

}
f();

Kimsə düşünə bilər ki, alert()-in birinci çağırışı nəticəsində ekranda "qlobal"
sözü yazılacaq, çünki lokal dəyişənini elan edən var təlimatı, hələ yerinə
yetirilməmişdir. Ancaq sahələrin təyini qaydasına əsasən görünüşdə bu belə
olmur. Lokal dəyişən funksiyanın bütün gövdəsində müəyyən edilmişdir, deməli,
həminki eyni qlobal dəyişən funksiyanın bütün gövdəsində gizlədilmişdir.
Hərçənd ki, lokal dəyişən var təlimatının icrasına qədər hər yerdə müəyyən
edilmişdir, lakin o inisializasiya edilməmişdir. Buna görə də əvvəlki nümunədə f
funksiyası aşağıdakı koda ekvivalentdir:

function f()
{

var scope; // Lokal dəyişən funksiyanın başlanğıcında təyin
 // edilir

alert(scope); // Burada dəyişən mövcuddur, lakin undefined

 // qiymətinə malikdir
scope = "lokal"; // Burada biz dəyişəni inisializasiya edirik və ona

 // qiymət mənimsədirik
alert(scope); // Burada artıq dəyişən qiymətə malikdir

}

4.3.2. Qeyri-müəyyən və inisializasiya edilməyən dəyişənlər

Əvvəlki bölmədəki nümunələr JavaScript-in incə proqramlaşdırma vəziyyətini
təsvir edir: qeyri-müəyyən dəyişənlərin iki növü var. Birincisi – heç bir yerdə elan
edilməyən dəyişəndir. Elan edilməmiş dəyişənin qiymətini oxumaq cəhdi yerinə
yetirilmə zamanının səhvə gətirib çıxaracaq. Elan	edilməyən	dəyişənlər	müəyyən
edilmir, çünki onlar sadəcə olaraq mövcud deyil. Artıq deyildiyi kimi, elan
edilməyən dəyişənə qiymət mənimsədilməsi səhv deyil – sadəcə bu dəyişən
mənimsədilmə zamanı gizli qlobal dəyişən kimi elan edilir.
Qeyri-müəyyən dəyişənlərin ikinci növü – elan edilmiş dəyişənlərdir, lakin bu
dəyişənlərə heç yerdə qiymət mənimsədilməmişdir. Əgər bu tip dəyişənlərin
qiyməti oxunarsa, susmaya görə bu dəyişənin qiyməti undefined olacaq. Belə
dəyişənləri digər dəyişənlərdən fərqləndirmək üçün bu dəyişənlər inisializasiya
edilməmiş	 (unassigned) adlandırılır. Aşağıdakı kodda qeyri-müəyyən və
inisializasiya edilməyən dəyişənlər arasında bəzi fərqlər təsvir edilir:

var x; // İnisializasiya edilməyən dəyişən elan edirik. Dəyişən
 // undefined qiymətinə malikdir.

alert(u); // Elan edilməyən dəyişəndən istifadə səhvə gətirib çıxaracaq.
u = 3; // Elan edilməyən dəyişənə qiymət mənimsədilərkən, həm də bu

 // dəyişən yaradılmış olur.

4.4. Elementar və sitat �pləri

Növbəti mövzuda biz dəyişənlərin tərkibi haqqında bəhs edəcəyik. Biz tez-tez
deyirik ki, dəyişənlər qiymətləri özündə saxlayır. Həqiqətəndə bu belədir? Bu
suala cavab vermək üçün, biz məcburuq JavaScript-də dəstəklənən məlumat
tiplərinə yenidən baxaq. Bu tiplər iki qrupa bölünür: elementarlar və sitatlar.
Ədədlər, məntiqi qiymətlər, həmçinin null və undefined qiymətləri elementar
tiplərdir. Obyektlər, massivlər və funksiyalar sitat tipləridir.
Elementar tip təsbit edilmiş ölçüyə malikdir. Məsələn, ədəd səkkiz bayt tutur,
məntiqi qiymət isə cəmi bir bit ilə təqdim edilə bilər.
Ədəd	tipi – elementar tiplərin ən böyüyüdür. JavaScript-də hər bir dəyişən üçün
yaddaşda səkkiz bayt ehtiyat saxlanıldığına, dəyişən istənilən elementar tipdə

olan qiymətini bilavasitə ehtiva edə bilər. 12

Ancaq sitat tiplərində başqa cürdür. Məsələn, obyektlər hər hansı uzunluqda ola
bilər – onlar təsbit edilmiş ölçüyə malik deyillər. Bu �ikiri massivlərə də aid etmək
olar: massiv, istənilən qədər elementə malik ola bilər. Bu �ikir funksiya üçün də
analojidir, yəni funksiya istənilən həcmdə olan JavaScript-kodu ehtiva edə bilər.
Bir halda ki, bu tiplər təsbit edilmiş ölçüyə malik deyil, onda onların qiymətləri
bilavasitə hər bir dəyişənin yaddaşında təyin olunmuş səkkiz baytda saxlanıla
bilməz. Buna görə də dəyişəndə belə qiymətlər istinad üzrə saxlanılır. Adətən bu
istinad yaddaşda hər hansı göstəricidən və ya ünvandan təşkil olunur.
İstinad –	qiymət	deyil. Lakin dəyişənə qiyməti	 harada	 tapmaq	olduğunu bildirir.
Elementar və sitat tipləri arasında əsas fərq onların davranışındadır.
Ədədlər ilə əməliyyat edən aparan (elementar tip) aşağıdakı koda baxaq:

var a = 3.14; // Dəyişənin elan edilməsi və inisializasiyası
var b = a; // Yeni dəyişənə ilk dəyişənin qiymətinin kopyalanması
a = 4; // İlk dəyişənin qiymətinin modifikasiyası
alert(b) // 3.14 göstərilir; surət dəyişmədi

Bu kodda qeyri-adi heç nə yoxdur. Bəs əgər ədədləri massivlərlə (sitat tipi) əvəz
edib kodu azca dəyişdirsək onda necə olar:

var a = [1,2,3]; // Dəyişəni massivə istinadla inisializasiya edirik
var b = a; // Yeni dəyişənə də bu istinada köçürürük
a [0] = 99; // İlkin istinaddan istifadə edərək massivi dəyişdiririk
alert(b); // yeni istinaddan istifadə edərək dəyişdirilmiş massivi,

 // yəni [99,2,3] göstəririk

Bu nəticə kimə qaranlıq qalmadısa, demək həmin şəxs artıq elementar və sitat
tiplərinin arasında fərqi anlamışdır. Bu tiplər arasında fərqi anlamayanlar isə
kodun ikinci sətirini diqqətlə nəzərdən keçirsinlər. Nəzərə alın ki, bu təklifdə
massivin özünə deyil, "massiv" tipinin qiymətinə istinadın mənimsədilməsi
yerinə yetirilir. Kodun ikinci sətirindən sonra biz hamımız hələ bir obyektə
malikik massiv; yalnız biz ona iki istinad almağı bacarırıq. Dəyişənlər elementar
tiplərin faktiki qiymətlərini, sitat tiplərinin istinadlarını özündə saxlayır. Baza və
sitat tiplərinin müxtəlif davranışı daha ətra�lı bölmə 3.15-də öyrənilir.
Siz qeyd edə bilirdiniz ki, bəs JavaScript-də sətirlərin elementar və ya sitat
tiplərinə aid olduğu barədə bəhs olunmadı.
Sətirlər	 –	 qeyri-adi	 davranışa	 malikdir. Onlar dəyişən uzunluğuna malikdir və
buna görə, görünür ki, bilavasitə bərkidilmiş ölçülü dəyişənlərində saxlanıla
bilmir. Effektivlik nöqteyi-nəzərində gözləmək olar ki, JavaScript interpretatoru
sətirləri istinadlara köçürəcək və onlar faktiki olaraq tərkib sayılmır. Eyni
zamanda bir çox münasibətlərdə sətirlər özünü elementar tiplər kimi aparır. Bu
cür sadələşməyə, JavaScript-in faktiki realizasiyasının təsviri kimi baxmağa

lüzum yoxdur. Burada sual oluna bilər ki, bəs sətirlər konkret olaraq hansı tipə
aiddir? Bu haqda �ikir söyləmək çətindir və bu biraz mübahisəli məsələdir, çünki
əslində sətirlər dəyişməzdir: bu dilin, sətir qiymətinin daxilində sətirin tərkibini
dəyişdirmək imkanı yoxdur. Bu o deməkdir ki, əvvəlki oxşar nümunəni, yəni
massivlərin istinad üzrə yamsılanmasını bu tipdə təşkil etmək olmaz. Son olaraq,
sətirlərə, özünü elementar tip qismində aparan dəyişməz sitat tipi kimi və ya
sitat tipinin mexanizmindən istifadəyə realizasiya edilmiş elementar tip kimi
baxmaq olmaz.

4.5. Tullan�lar dəs�

Sitat tipləri təsbit edilmiş ölçüyə malik deyil; buna görə, onlar çox böyük ölçüyə
malik ola bilər. Qeyd edildiyi kimi, dəyişənlər sitat tipində olan qiymətləri
bilavasitə özündə saxlamır. Qiymətlər hər hansı bir yerdə saxlanılır, dəyişənlərdə
isə yalnız bu yerə olan istinad saxlanılır. I�ndi isə, qiymətlərin real saxlamasının
qısa icmalını verəcəyik.
Bir halda ki, sətirlər, obyektlər və massivlər təsbit edilmiş ölçüyə malik deyil,
onların məlum ölçüsünün saxlanması üçün dinamik yer seçilməlidir. JavaScript-
proqramında sətir, massiv və ya obyekt yaradıldıqda, interpretator bu
məzmunun saxlanılması üçün yaddaş ayırmalıdır. Ayırılan yaddaş boş olmalıdır,
belə olmadıqd JavaScript interpretatoru bütün mümkün yaddaşdan istifadə
edəcək, yaddaş bitdikdə isə, sistemin imtinasına gətirib çıxaracaq.
C və C ++ kimi dillərdə, yaddaşı əl ilə boşaltmaq lazımdır. Məhz proqramçı bütün
yaradılan obyektlərin izlənilməsinə və bu obyektlər tələb olunmadığı halda
onların silinməsinə (yaddaşın azad olmasına) cavabdeh olmalıdır. Bu kifayət
qədər ağır prosesdir və tez-tez səhvlərə yol açır. JavaScript-də isə tullantı
kolleksiyası (garbage	 collection) adlandırılan texnologiya sayəsində, yaddaşı əl
ilə boşaltmağa ehtiyac yoxdur. JavaScript interpretatoru proqramda istifadə
olunmayacaq hər hansı bir obyekti aşkar edə bilər. I�nterpretator müəyyən edə
bilər ki, obyekt əlçatmazdır (yəni, obyektə istinad oluna bilməz), interpretator
müəyyənləşdirə bilər ki, obyekt daha lazım deyil və bu obyektin tutduğu yaddaş
boşaldılacaq. Məsələn aşağıdakı koda baxaq:

var s = "hello"; // Sətir üçün yaddaş ayırırıq
var u = s.toUpperCase(); // Yeni sətir yaradırıq
s = u; // İlkin sətirə olan istinadı köçürdürük

Bu kodun icrasından sonra ilk "hello" sətiri daha əlçatmazdır, yəni proqramda bir
daha bu dəyişənə istinad olunmur. Sistem bu faktı müəyyən edir və yaddaşı
boşaldır.

Tullantıların tənzimlənməsi avtomatik yerinə yetirilir və proqramçı üçün bu
proses gizlidir. Kod düzgün yazılmalıdır ki, tullantı tənzimlənməsi ehtiyacları
ayırd edə bilsin və hər köhnə obyekti silməsin.

4.6. Xüsusiyyət rolunda olan dəyişənlər

Siz artıq qeyd edə bilərsiniz ki, JavaScript-də dəyişən və obyekt xüsusiyyətləri
arasında çox oxşarlıq var. Buna eyni yolla qiymətin mənimsədilmə, JavaScript-
ifadələrinə eyni yolla tətbiq edilmə və s. kimi nümunələr gətirmək olar. Bəs,
dəyişən və o obyekt xüsusiyyətləri arasında hər hansı prinsipial fərq varmı?
Cavab: heç bir fərq yoxdur. JavaScript-də dəyişənlər obyekt xüsusiyyətlərindən
prinsipial olaraq fərqlənmir.

4.6.1. Qlobal obyekt

I�stənilən kodun icrasından əvvəl işə salma zamanı JavaScript interpretatoru
tərə�indən yerinə yetirilən ilk davranışlardan biri – qlobal obyektin
yaradılmasıdır. Bu obyektin xüsusiyyətləri JavaScript- proqramlarında qlobal
dəyişənlərdən təşkil olunub. JavaScript-də qlobal dəyişən elan etdikdə, faktiki
olaraq siz qlobal obyekt xüsusiyyətini müəyyən edirsiniz.
JavaScript interpretatoru bir sıra qlobal obyektin xüsusiyyətlərini, istinadları,
qiyməti qabaqcadan müəyyən edilmiş və funksiyalar inisializasiya edir. Belə ki,
qabaqcadan müəyyən edilmiş Infinity ("sonsuzluq") ədədinə, parseInt və
Math xüsusiyyətləri isə, qabaqcadan müəyyən edilmiş obyektə istinad edir. Bu
barədə daha ətra�lı kitabın üçüncü hissəsində, qlobal qiymətlər haqqında olan
bəhsdən oxumaq olar. Yuxarı səviyyəli kodda (yəni, funksiya hissəsi olmayan
JavaScript-kodu) qlobal obyektə this açar sözü vasitəsi ilə istinad etmək
mümkündür. Funksiyaların daxilində isə this açar sözü başqa cür tətbiq olunur.
Bu barədə daha ətra�lı 8-ci fəsildə tanış ola bilərsiz.
JavaScript-in kliyent dilində bütün JavaScript-kodu üçün qlobal obyekt sayılan və
brauzer pəncərəsinə uyğun olan Window obyekti mövcuddur. O� zü qlobal obyektə
istinad edən bu qlobal obyekt window xüsusiyyətinə malikdir hansı ki, qlobal
obyektə istinad üçün this açar sözü ilə birlikdə istifadə etmək olar. Window
obyekti parseInt və Math kimi baza qlobal xüsusiyyətlərini, həmçinin
navigator və screen kimi qlobal kliyent xüsusiyyətlərini müəyyən edir.

4.6.2. Lokal dəyişənlər - çağırış obyek�

Əgər qlobal dəyişənlər – xüsusi qlobal obyektin xüsusiyyətləri olursa, onda bəs
lokal dəyişənlərdə bu proses necə olur? Lokal dəyişənlər də həmçinin obyekt
xüsusiyyətlərindən təşkil olunub. Bu obyekt çağırış	obyekti	(call	object) adlanır.
Funksiyanın gövdəsi yerinə yetirilən zaman, funksiyada mövcud olan funksiyalar,
arqumentlər və lokal dəyişən bu obyektin xüsusiyyətləri kimi saxlanılır.
JavaScript-də lokal dəyişənlər üçün tamamilə ayrı obyektdən istifadə edildiyinə
görə qlobal dəyişənlərlə ad münaqişəsi yarana bilməz.

4.6.3. JavaScript-də icra kontekstləri

Funksiya icra edilməyə başlayararkən, JavaScript interpretatoru funksiya üçün
icra	 kontekstini (execution	 context) yaradır, yəni burada JavaScript-kodda
mövcud olan ixtiyari fraqment yerinə yetirilir. Kontekstin mühüm hissəsi –
dəyişənlərin müəyyən edildiyi obyektdir. Buna görə də, JavaScript-proqramının
kodu, hər hansı funksiya hissəsi olmayan, dəyişən təyin olunduğu qlobal obyektin
icra kontekstində işləyir. JavaScript-funksiyaları isə lokal dəyişənlərin müəyyən
edildiyi çağırış obyektinin şəxsi unikal icra kontekstində işləyir.
Qeyd etmək lazımdır ki, bəzi JavaScript realizasiyalarında qlobal obyektlərin
ayrılıqda bir neçə qlobal icra konteksti mövcud ola bilər (Hərçənd bu halda hər
bir qlobal obyekt tam olar qlobal sayılmır)13. Məsələn – JavaScript kliyentində,
brauzerin ayrılıqda hər bir pəncərəsi və ya pəncərədəki hər bir çərçivə ayrılıqda
qlobal icra kontekstini müəyyən edir. JavaScript kliyent kodu hər bir çərçivədə və
ya pəncərədə şəxsi icra kontekstində yerinə yetirir və şəxsi qlobal obyektə
malikdir. Ancaq ayrı-ayrı olan bu kliyent qlobal obyektlərin xüsusiyyətləri bir-
birilə əlaqəlidir. Başqa sözlə, JavaScript-kodu parent.frames[1] ifadəsinin
köməyi ilə bir çərçivədən digər çərçivəyə istinad edə bilər və birinci çərçivədə
olan x qlobal dəyişəninə parent.frames[0].x ifadəsinin köməyilə ikinci
çərçivədən istinad etmək olar.
JavaScript-kliyentində ayrı-ayrı olan pəncərələrin və çərçivələrin icra
kontekstlərinin necə əlaqələndiyini tam anlamanıza hal-hazırda ehtiyac yoxdur.
Bu mövzuya kitabın II hissəsində toxunacağıq. I�ndi bilmək kifayətdir ki, dilin
elastikliyi sayəsində, bir JavaScript interpretatoru ssenaridə müxtəlif qlobal
kontekstlərində icra etməyə imkan verir və bu kontekstləri bir-birindən
ayırmağa ehtiyac yoxdur – onlar bir-birinə istinad edə bilər.
Gəlin, bu son mülahizəyə daha ətra�lı aydınlıq gətirək. Əgər JavaScript bir icra
kontekstindən digər icra kontekstindəki kodu oxuya və xüsusiyyətlərə qiymətlər
yaza və buradakı müəyyən edilmiş funksiyaları yerinə yetirə bilərsə onda
təhlükəsizlik məsələləri aktuallaşır. Nümunə kimi JavaScript-kliyentini götürək.
Fərz edək ki, brauzerinin A pəncərəsində ssenarini icra edilir və ya bu pəncərə
lokal şəbəkənizdə olan hər hansı informasiyanı ehtiva edir, B pəncərəsində isə

internet mənbəli bir neçə sərbəst saytdan ssenari icra edilir. Biz A
pəncərəsindəki xüsusiyyətlərə B pəncərəsində olan koddan girişi
məhdudlaşdırmalıyıq. Axı, belə olmayan halda yad koddan korporativ
əhəmiyyətlii informasiyanı oxumaq və oğurlamaq mümkün olacaq. Beləliklə,
JavaScript-kodunun təhlükəsiyini təmin etmək üçün bir icra kontekstindən
digərinə girişi məhdudlaşdıran xüsusi mexanizm yaradılmalıdır.

4.7. Bir daha dəyişənlərin görünmə sahəsi haqqında

Biz ilk dəfə dəyişənin görünmə sahəsi anlayışını müzakirə edərkən, görünmə
sahəsini yalnız JavaScript-kodun leksik strukturu əsasında müəyyən etdik: qlobal
dəyişənlər qlobal, funksiyada elan edilmiş dəyişənlər isə lokal görünmə sahəsinə
malikdir. Əgər funksiyanın daxilində başqa funksiya təyin edilmişdirsə, onda bu
daxili funksiyada elan edilmiş dəyişənlər, daxili lokal görünmə sahəsinə malikdir.
I�ndi, biz bilirik ki, qlobal dəyişənlər qlobal obyektin, lokal dəyişənlər isə xüsusi
çağırış obyektinin xüsusiyyətlərini müəyyən edir, ona görə də biz görünmə
sahəsi anlayışına yenidən qayıda bilərik. Bu bizə dəyişənlərin bir çox
kontekstlərdə mövcudluğunu və JavaScript-in necə işlədiyi daha dərin anlamağa
imkan verəcək.
JavaScript-də hər bir icran konteksti siyahıdan, “zəncirdən”14 və obyektdən təşkil
olunan görünmə	 sahələri	 zəncirinə	 (scope	 chain)	bağlıdır. obyektlər. JavaScript-
koda x dəyişəninin qiymətini tapmaq tələb olunan zaman (bu proses dəyişən
adına	 icazə adlanır), zəncirdə axtarış ilk olaraq obyektdən başlayır. Əgər
obyektdə x adlı xüsusiyyət tapıldısa, onda bu xüsusiyyətin qiymətindən istifadə
olunur. Əgər birinci obyektdə x adlı xüsusiyyəti tapılmasa, onda JavaScript
axtarışı zəncirin növbəti obyektində davam etdirir. Əgər ikinci obyektdə də x
adıyla xüsusiyyət tapılmasa, axtarış növbəti obyektdə davam edir və proses
iyerarxik formalaşır.
JavaScript-də yuxarı səviyyəli kodun (funksiya hissəsi olmayan kod), görünmə
sahələri zənciri yalnız qlobal obyektdən ibarətdir. Bütün dəyişənlər bu obyektdə
axtarılıb tapılır. Əgər dəyişən mövcud deyilsə, onda qiymət undefined-ə
bərabərdir. Funksiyada görünmə sahələrinin zənciri iki obyektdən ibarətdir.
Funksiya dəyişənə istinad edərkən, ilk növbədə çağırış obyekti (lokal görünmə
sahəsi), ikinci növbədə – qlobal obyekt (qlobal görünmə sahəsi) yoxlanılır. Daxili
funksiya görünmə sahələri zəncirində üç və ya daha çox obyektə malik olur.
Funksiyanın görünmə sahələri zəncirində dəyişən adının axtarılması prosesi
aşağıdakı şəkildə təsvir edilir.

Dəyişənin	axtarışı
Görünmə	sahələri	zənciri
Leksik	görünmə	sahəsi

müəyyən edilməyib
Yox
qlobal obyekt
Hə
qiymətin
alınması

y:2
var x=1;

function f(){
z=2;

}

function f() {
y=2;

}

z:3
x:1

burada	müəyyən
edildi?

Yox

Hə
qiymətin
alınması
g() funksiyasının
çağırış obyekti

burada	müəyyən
edildi?

Yox

Hə
qiymətin
alınması
g() funksiyasının
çağırış obyekti

burada	müəyyən
edildi?

BAŞLA

Şəkil	4.1.	Dəyişən	adının	görünmə	sahələri	və	icazənin	zənciri

5
İfadələr və operatorlar

Bu fəsildə biz, JavaScript-də olan ifadələr və operatorlar ilə tanış olacağıq. C, C++
və ya Java proqramlaşdırma dillərindən anlayışı olan bu fəsil ilə ötəri tanış
olacaq, çünki JavaScript PD-nin operatorları sözügedən PD-lərin operatorları ilə
çox oxşardır. Əgər operatorlar və ifadələr barədə anlayışınız yoxdursa, (və ya
azdırsa) bu fəsillə dərindən tanış olmağınız məsləhətdir.

5.1. İfadələr

I�fadə – qiymət almaq üçün interpretator tərə�indən hesablana bilən JavaScript
dilinin frazasıdır. Ən sadə ifadələr – literal və ya dəyişənlərin adlarıdır, məsələn:

1.7 // Ədəd literalı
"JavaScript is fun!" // Sətir literalı
true // Məntiqi qiymət literalı
null // null qiymətinin literalı
/java/ // Requlyar ifadə literalı literalı
{ x:2, y:2} // Obyekt literalı
[2,3,5,7,11,13,17,19] // Massiv literalı
function (x){ return x*x;} // Funksional literal
i // i dəyişəni
sum // sum dəyişəni

İfadənin	literal	qiyməti - sadəcə	öz	literalının	qiymətidir.
İfadə-dəyişənin	qiyməti – dəyişənin	və	ya	dəyişənin	istinad	etdiyi	qiymətdir.
Bu ifadələr o qədər də maraqlı deyil. Sadə ifadələrin birləşməsi yolu ilə daha
mürəkkəb (maraqlı) ifadələr yaradıla bilərlər ifadələr. Məsələn, biz gördük ki, 1.7
və i ifadədir. Aşağıdakı nümunə də ifadə sayılır:

i + 1.7

Bu ifadənin qiyməti iki və ya daha çox sadə ifadənin qiymətinin toplanması yolu
ilə təyin edilir. Bu nümunədə + (üstəgəl) simvolu – ifadələr arasında toplama
əməliyyatını yerinə yetirən toplama operatordur. Digər operator isə ifadələr
arasında çıxma əməliyyatını yerinə yetirən çıxma ("minus") operatorudur.
Məsələn:

P 		A Operator Operand
tipi

Yerinə	yetirilən
əməliyyat

15 L . Obyekt,
identi�ikator

Xüsusiyyətə
Müraciət

L [] Massiv, tam
ədəd

Massivin
indeksləşdirməsi

L () Funksiya,
arqumentlər

Funksiya çağırışı

R new Konstruktor
çağırışı

Yeni obyektin
yaradılması

14 R ++ Solyönlü ifadə O� n şəkilçi və ya
post�iks artım
(unar)

R -- Solyönlü ifadə O� n şəkilçi və ya
post�iks dekrement
(unar)

(i + 1.7) - sum

Bu ifadədə "minus" operatoru əvvəlki i + 1.7 ifadəsinin qiymətindən sum
dəyişənin qiymətinin çıxılması üçün tətbiq edilir.
Növbəti bölmədə siz, JavaScript-in digər operatorları ilə tanış olacaqsınız.

5.2. Operatorların icmalı
Əgər siz C, C++ və ya Java proqramlaşdırma dilləri ilə tanışsızsa, onda JavaScript-
operatorların əksəriyyəti artıq sizə məlumdur. Bu operatorlar cədvəl 5.1-də
göstərilmişdir. Nəzərə alın ki, operatorların əksəriyyəti punktuasiya simvolları
ilə (+, -,=, ...), bəziləri isə – açar sözlər (delete və instanceof) ilə təsvir edilir. Açar
sözlər və punktuasiya simvolları adi operatorları ifadə edir, sadəcə birinci halda
daha geniş və asan oxunan sintaksis alınır. Bu cədvəldə "P" hər�i ilə göstərilmiş
sütun operatorun prioritetini bildirir, "A" hər�i ilə göstərilmiş sütun isə –
operatorun assosiativliyini (L – soldan sağa və ya R – sağdan sola) bildirir. Bunlar
barədə anlayışı olmayan narahat olmasın, biz, növbəti yarımfəsillərdə izah
edəcəyik.

R - Ədəd Unar minus (nişanın
dəyişməsi)

R + Ədəd Unar üstəgər
(əməliyyat yoxdur)

R ~ Tam ədədlər Bit-təyinatlı
operator (unar)

R ! Məntiqi
qiymət

Məntiqi operator
(unar)

R delete Solyönlü
qiymət

Xüsusiyyətlərin
silinməsi (unar)

R typeof I�stənilən Məlumat tipini
qaytarır (unar

R void I�stənilən Qeyri-müəyyən
qiymət qaytarır
(unar)

13 L *, /, % Ədəd Vurma, bölmə, qalıq
12 L +, - Tam ədəd Toplama, çıxma

L + Sətirlər Sətirlərin
bitişdirilməsi

11 L <<

Tam ədədlər Sola sürüşdürmə

L >> Tam ədədlər Geniş simvol dərəcəsi
ilə sağa sürüşdürmə

L >>> Tam ədədlər Sı�rlar əlavə etməklə
sağa sürüşdürmə

10 L <, <= Ədədlər və ya
sətirlər

Kiçik və kiçik
bərabərdir

L >, >= Ədədlər və ya
sətirlər

Böyük və böyük
bərabərdir

L instanceof Obyekt,
konstruktor

Obyek�n �pinin
yoxlanılması

L in Sətir, obyekt Xüsusiyyə�n
mövcudluğun
yoxlanılması

9 L == I�stənilən Bərabərliyə
yoxlanılması

L ! = I�stənilən Bərabərsizliyin
yoxlanılması

L === I�stənilən Eyniliyin yoxlanılması
L !== I�stənilən Eynilik olmamasının

yoxlanılması

P 		A Operator Operand
tipi

Yerinə	yetirilən
əməliyyat

8 L & Tam ədəd Bit təyinatlı VƏ
7 L ^ Tam ədədlər Bit təyinatlı is�snalı

VƏ YA

Cədvəl	5.1.	JavaScript	operatorları

6 L || Tam ədədlər Bit təyinatlı VƏ YA
5 L && Məntiqi

qiymətlər
Mən�qi VƏ

4 R ?: Məntiqi
qiymət,
istənilən

Şər� üçölçülü
operator

3 R = Solyönlü
qiymət,
istənilən

Mənimsəmə

2 R *=, /=,
%=, +=,
-=, <<=,
>>=,
>>>=,
&=, ^=,
|=

Solyönlü
qiymət,
istənilən

Əməliyyatla
mənimsətmə

1 L , I�stənilən Çoxsaylı hesablama
Cədvəl	5.1.	JavaScript	operatorları	(davamı)

5.2.1. Operandların miqdarı

Operatorlar onlara tələb edilən operandların miqdarı üzrə kateqoriyalara
bölünmüş ola bilər. JavaScript-də olan operatorların əksəriyyəti, məsələn
toplama (+) operatoru ikilikdir. Belə operatorlar iki ifadəni bir-birinə daha
mürəkkəb birləşdirir. Beləliklə bu operatorlar iki operandla işləyir. JavaScript
həmçinin bir neçə unar operatoru da dəstəkləyir ki, bu operatorlar ifadəni daha
mürəkkəb formada dəyişdirəcəklər. -3 I�fadəsindəki "minus" operatoru 3 rəqəmin
işarəsinin mən�iyə (yəni -3) dəyişməsini yerinə yetirən unar operatorudur. Və
nəhayət, JavaScript bir dənə də üçlük operatorunu dəstəkləyir. Şərti operator
adlandırılan bu ?: operatoru, üç ifadəni bir qiymətdə birləşdirir.

5.2.2. Operandların �pi

JavaScript-də ifadələr yaratdıqda, operatorların dəstəklədiyi və qaytardığı
məlumat tipini nəzərə almaq lazımdır. Çünki bəzi operatorlar, tələb edir ki,
operandlar müəyyən tipdə olan qiymətləri qaytarsın. Məsələn, sətirlərin
vurulmasını yerinə yetirmək olmaz, buna görə də "a" * "b" ifadəsi JavaScript-də
mümkün deyil. Ancaq JavaScript interpretatoru ifadəni mümkün qədər tələb
edilən tipə dəyişməyə çalışır, buna görə də "3" * "5" ifadəsi düzgündür və onun
qiyməti sətir kimi ("15") deyil ədəd kimi (15) alınacaq. JavaScript-də tiplərin
müxtəli�liyi haqqında 3.12 paraqraf danışılır. Bəzi operatorlar operandların
tipindən asılı olaraq müxtəlif funksiyalara malikdir.
Ən açıq nümunə – + operatordur ki, ədəd operandlarının toplanmasını və sətir
operandlarını bitişdirilməsini yerinə yetirir. Bundan başqa, əgər bu operatora bir
sətiri və bir ədəd, ədəd sətirə dəyişdirəcək və alınmış iki sətirin bitişdirilməsi
əməliyyatı yerinə yetirəcək. Məsələn, "1"+ 0 ifadəsinin nəticəsi "10" sətiri
olacaq.
Nəzərə alın ki, mənimsəmə operatorları, digər solyönlü operatorlar kimi,
ifadələrin sol hissəsində solyönlü qiymətin (lvalue) tələb edirlər. Solyönlü
qiymət – tarixi termindir və "ifadə mənimsəmə operatorunun sol hissəsində ola
bilər" kimi izah edilir. JavaScript-də dəyişənlər, obyekt xüsusiyyətləri və massiv
elementləri solyönlü qiymətdir. ECMAScript spesi�ikasiyasına müva�iq olaraq
inteqrasiya edilmiş funksiyalar, solyönlü qiymətləri qaytarmağa imkan verir,
amma oxşar tərzdə heç bir inteqrasiya edilmiş funksiya müəyyən etməyə icazə
vermir.
Və nəhayət, operatorlar həmişə malik olduqları tipin qiymətlərini qaytarmır.
Müqayisənin operatorları (böyük, kiçik, bərabər, və s.) müxtəlif tipləri
arqumentlər kimi qəbul edir, amma nəticəni məntiqi tipdə qaytarır. Məsələn, a<3
ifadəsi, əgər a dəyişəninin qiyməti 3-dən azdırsa true qiymətini alır. Gələcəkdə
biz görəcəyik, müqayisə operatorları tərə�indən alınan məntiqi qiymətləri if
təlimatlarında istifadə olunur. Həmçinin JavaScript-də müqayisə operatorları ilə
ifadələrin hesablanmasının nəticələrindən asılı olaraq proqramın icrasını idarə
edən while və for dövrlərində istifadə olunur.

5.2.3. Operatorların prioritetliyi

Cədvəl	 5.1-də "P" hər�i qoyulmuş sütunda hər bir operatorun prioriteti
göstərilmişdir. Operatorun prioritetliyi əməliyyatların yerinə yetirmə ardıcılığını
ifadə edir. "P" sütununda böyük əhəmiyyətə malik olan operatorlar, ilk sıralarda,
prioriteti daha az olan operatorlar isə sonuncu sıralarda göstərilmişdir.
Aşağıdakı ifadəyə baxaq:

w = x + y * z;

Vurma (*) operatoru digər operatorla (+) müqayisədə böyük prioritetə malikdir,
ona görə də ifadədə ilk öncə, vurma daha sonra isə toplama əməliyyatı yerinə
yetirilir. Bundan başqa, mənimsəmə operatoru (=) ən kiçik prioritetə malikdir,
buna görə də mənimsəmə sağ tərəfdə olan bütün əməliyyatların
tamamlanmasından sonra yerinə yetirilir.
Operatorların prioriteti mötərizələrin köməyi ilə istəyinizə uyğun təlqin edilə
bilər. Məsələn, əvvəlki nümunəni elə yazarıq ki, burada toplama birinci yerinə
yetirilsin:

w = (x + y) * z;

Əgər siz operatorların prioritetlərindən əmin deyilsinizsə, daha sadə metod:
mötərizələrin köməyi ilə hesablamaların gedişatını istəyinizə uyğun həyata
keçirin. Lakin aşağıdakı qaydaları bilməyiniz məsləhətdir: vurma və bölmə,
toplama və çıxma əməliyyatlarından əvvəl yetirilir və mənimsəmə operatoru isə
çox aşağı prioritetə malikdir və demək olar ki həmişə sonda yerinə yetirilir.

5.2.4. Operatorların assosia�vliyi
Cədvəl	 5.1-də "A" hər�i qoyulmuş sütunda operatorun assosiativliyi
göstərilmişdir. L qiyməti soldan sağa assosiativliyi, R qiyməti isə sağdan sola
assosiativliyi bildirir. Operatorun assosiativliyi eyni prioritetə malik olan
əməliyyatların icra edilməsi ardıcılığını müəyyən edir. Assotivliyi soldan sağa
onu bildirir ki, burada əməliyyatlar soldan sağa yerinə yetirilir. Məsələn, toplama
operatorunun assosiativliyi soldan sağadır, buna görə də aşağıdakı iki ifadəyə
ekvivalentdir:

w = x + y + z;
w = ((x + y) + z);

I�ndi isə bu ifadələrə baxın (ifadələr praktik olaraq mənasızdır):

x = ~-~y;
w = x = y = z;
q = a? b:c? d:e? f:g;

Bu ifadələr aşağıdakı ifadələrə ekvivalentdir:

x = ~(-(~y));
w = (x = (y = z));
q = a?b: (c?d:(e?f:g));

Çünki, unar operatorları, mənimsəmə operatorları və üçlük şərt operatorları
sağdan sola assosiativliyə malikdir.

5.3. Hesab operatorları

Bu bölmədə biz hesab operatorları öyrənəcəyik:

Toplama	(+)

"üstəgəl" operatoru ədəd operandlarını toplanılmasını və ya sətirlərin
birləşdirməsini yerinə yetirir. Əgər operandlardan biri sətirdirsə, digər
operand sətirə çevriləcək və birləşdirmə yerinə yetiriləcək. Ədədə və ya
sətirlərə dəyişdirilmiş obyekt-operandlarında müva�iq olaraq toplama və
bitişdirilmə yerinə yetirilir. Bu dəyişiklik valueOf() və/və ya toString()
metodlarının köməyi həyata keçirilir.

Çıxma	(-)
"Minus" operatorunun ikili istifadə edildikdə, o birinci operanddan ikinci
operandın çıxılmasını yerinə yetirir. Əgər ədəd olmayan operandlar
göstərilmişdirsə, onda operator onları ədədlərə dəyişdirməyə çalışır.

Vurma	(*)
* operatoru iki operandı bir-birinə vurur. Ədəd olmayan operandlar
göstərdikdə, operator onları ədədlərə çevirməyə çalışır.

Bölmə	(/)
/ operatoru birinci operandı ikinci operanda bölür. Ədəd olmayan
operandlar göstərdikdə, operator onları ədədlərə çevirməyə çalışır. Başqa
proqramlaşdırma dilləri ilə tanış olanlar, tam ədədin tam ədədə bölünməsi
nəticəsində alınan həqiqi ədədin, yalnız tam hissəsinin istifadə edildiyini
güman edə bilərlər. Ancaq JavaScript- də bütün ədədlər həqiqi ədədlərdir,
buna görə də bölmənin nəticəsi istənilən üzən nöqtəli qiymət ola bilər.
Məsələn 5/2 əməli 2 deyil, 2.5 nəticəsini verəcək. Sıfıra bölmənin nəticəsi –
ya müsbət ya da mən�i sonsuzluq olur. 0/0 isə NaN qiymətinə alır.

Qalıqlı	bölmə	operatoru	(%)
birinci operandın ikinci operanda bölünməsindən alınan qalığı hesablayır.
Ədəd olmayan operandlar göstərdikdə, operator onları ədədlərə çevirməyə
çalışır. Nəticənin işarəsi birinci operandın işarəsinə uyğun gəlir, məsələn 5
% 2 1 verir. Qalıqlı bölmə operatoru adətən tam ədədlərə tətbiq edilir,

amma kəsr ədədlərində də bu arifmetrik əməliyyat yerinə yetirilə bilər.
Məsələn, - 4.3 % 2.1 ifadəsinin nəticəsi - 0.1 alınır.

Unar	minus	(-)
Minus unar operator kimi istifadə olunduqda, yeganə operanddan əvvəl
göstərilir və işarənin dəyişməsinin unar əməliyyatını yerinə yetirir. Başqa
sözlə, o mən�i qiyməti müsbətə və ya əksinə dəyişəcək. Ədəd olmayan
operandlar göstərdikdə, operator onları ədədlərə çevirməyə çalışır.

Unar	üstəgəl	(+)
JavaScript-də "unar çıxma" operatoruna simmetrik "unar üstəgəl"
operatoru da mövcuddur. Bu operatorun köməyilə ədəd literallarının
işarəsini açıq-aydın vermək olar. Nadir hallarda istifadə edilir və bəzi
proqramçılar hesab edir ki, belə olan halda proqramın mətni daha aydın
olur:

var profit = +1000000;

Bu kodda "üstəgəl" operatoru heç nəyi etmir; onun arqumentinin qiyməti
onun işinin nəticəsidir. Ancaq bu operator ədəd olmayan arqumentləri
ədədlərə dəyişdirəcək. Əgər arqument dəyişdirilə bilmirsə, NaN qiymətini
alır.

Artım	(++)
Tək operantlı (bu dəyişən, massiv elementi və ya obyekt xüsusiyyəti ola
bilər) operator öz operandı üzərində inkrementləşmə (yəni, bir vahid
artma) əməliyyatını yerinə yetirir. Əgər bu dəyişənin qiyməti, massiv
elementi və ya obyekt xüsusiyyəti ədəd deyilsə, operator əvvəlcə onu ədədə
çevirməyə çalışır. Bu operatorun operandla dəqiq davranışı vəziyyətdən
asılıdır. Əgər bu operatoru operanddan əvvəl qoymusuzsa, onda operanda
1 əlavə edilir və operandın artırılmış qiyməti operatorun nəticəsi olur. Əgər
bu operatoru operanddan sonra qoysanız (artımın post�iks operatoru),
onda operanda 1 əlavə edilir, ancaq operandın ilkin operatorun nəticəsi
olur. Əgər artırılan qiymət ədəd deyilsə, o hesablama prosesində ədədə
çevriləcək. Məsələn, aşağıdakı kod i və j dəyişənlərini 2-ə bərabər edir:

i = 1; j = ++i;

Lakin burada i dəyişənin qiyməti 2, j dəyişəninin qiyməti 1 olaraq təyin
edilir.

i = 1; j = i++;

Bu operator (hər iki formada) əksər hallarda dövrü idarə edən sayğacın
artımı üçün tətbiq edilir. Nəzərə alın ki, artımın ön şəkilçi və ya post�iks
operatorunu və onun operandını sətirlərdə tətbiq etmək olmaz, çünki,
JavaScript-də nöqtəli vergüllər avtomatik qoyulur. Elə buna görə, JavaScript
interpretatoru operanda baxacaq və ondan sonra nöqtəli vergülü
yerləşdirəcək.

Dekrement	(--)
Tək operantlı (bu dəyişən, massiv elementi və ya obyekt xüsusiyyəti ola
bilər) operator öz operandı üzərində dekrementləşmə (yəni, bir vahid
azalma) əməliyyatını yerinə yetirir. Əgər bu dəyişənin qiyməti, massiv
elementi və ya obyekt xüsusiyyəti ədəd deyilsə, operator əvvəlcə onu ədədə
çevirməyə çalışır. ++ operatoru kimi bu operatorun da operandla bağlı
dəqiq davranışı operatorun vəziyyətindən asılıdır. Əgər operatoru
operanddan əvvəl (artımın ön şəkilçi operatoru) qoymusuzsa, onda
operandı 1 vahid azaldır və operandın azaldılmış qiyməti operatorun
nəticədir. Əgər operatoru operanddan sonra qoymusuzsa (artımın post�iks
operatoru), o operandan 1 vahid çıxır, ancaq operandın ilkin qiyməti
operatorun nəticəsidir. Əgər azaldılan qiymət ədəd deyilsə, o hesablama
prosesində ədədə çevriləcək.

5.4. Bərabərlik operatorları
Bu bölmədə bərabərlik və bərabərsizlik operatorları öyrəniləcək. I�ki qiyməti
müqayisə edərək müqayisədən asılı olaraq, nəticəsi məntiqi qiymət (true və ya
false) olan operatorlardır. 6-cı fəsildə görəcəyik ki, bu operatorlar adətən
proqramın icra gedişatının idarəedilməsi üçün if təlimatlarında və for
dövrlərində tətbiq edilir.

5.4.1. Bərabərlik (==) və eynilik (===)
== və === operatorları iki müxtəlif üst-üstə düşmə təyinini rəhbər tutaraq iki
operandın üst-üstə düşməsini yoxlayır. Hər iki operator istənilən tipdə olan
operandları qəbul edir və son nəticədə əgər operandlar uyğun gələrsə (şərt
ödənərsə) true, əks halda falsə qiymətini alır. === operatoru, eyniliyin
operatorudur. Bu operator iki operandın ciddi təsadüfü təyinini rəhbər tutaraq,
"eyniliyini" yoxlayır. Operator == bərabərliyin operatoru kimi məlumdur
(məşhurdur), o yoxlayır, iki bərabərdirmi tiplərin dəyişikliklərini güman edən
(icazə verən) təsadüfün daha az ciddi təyininə uyğun olaraq onun operandı.

Eynilik operatoru ECMAScript v3-də standartlaşmışdır və JavaScript 1.3-də və
ondan yuxarı versiyalarda mövcuddur. Eynilik operatorunun tətbiqi ilə JavaScript
dili =, == və === operatorlarını dəstəkləməyə başladı. Əmin olun ki, siz
mənimsəmə, bərabərlik və eynilik operatorları arasında fərqi anlayırsınız. O� z
proqramlarının hazırlaması zamanı diqqətli olun və düzgün operatorlar tətbiq
edin! Hərçənd ki, hər üç operatoru "bərabər"dir adlandırmaq daha rahat olardı,
lakin qarışıqlıq olmasın deyə bu operatorları = operatorunu "alır", və ya
"mənimsənilir", == operatorunu "bərabərdir", === operatorunu isə "eynilikdir"
kimi oxumaq daha məqsədə uyğundur . JavaScript-də ədəd, sətir və məntiqi
qiymətlər öz qiymətləri ilə müqayisə edilir. Bu halda iki müxtəlif ölçüyə baxılır və
qiymətlərin == və ya === olduğu yoxlanılır. Bu isə o deməkdir ki, iki dəyişən şərt
ödədikdə bərabərdir və ya eynilikdir. Məsələn, iki sətir, yalnız o halda bərabərdir
ki, hər iki sətir özündə eyni simvolları ehtiva etsin. Eyni zamanda obyektlər,
massivlər və funksiyalar istinad üzrə müqayisə edilir. Bu isə o deməkdir ki, iki
dəyişən, yalnız o halda bərabərdir ki, onlar eyni obyektə istinad edilir. I�ki müxtəlif
massiv heç vaxt bərabər və ya eynilik olmur. Hətta onlar bərabər və ya eyni
elementləri özündə ehtiva edirsə belə heç vaxt bərabər və ya eynilik olmur.
Obyektlərə, massivlərə və ya funksiyalara istinad edən iki dəyişən, yalnız o halda
bərabərdir ki, bu dəyişənlər eyni obyekt, massiv və ya funksiyaya istinad edir. I�ki
müxtəlif obyektin və ya iki müxtəlif massivin eynilik və bərabərlik
xüsusiyyətlərini yoxlamaq üçün, onların hər bir xüsusiyyətini və ya elementinin
eyniliyini və ya bərabərliyini yoxlamaq lazımdır. (Və əgər hər hansı xüsusiyyət və
ya elementin özü obyektdirsə və ya massivdirsə, müqayisə daxil edilmə
dərinliyindən asılı olaraq yerinə yetirilməlidir.)
I�ki qiymətin eyniliyinin təyini zamanı === operatoru aşağıdakı qaydaları rəhbər
tutur:

•	Əgər iki qiymət müxtəlif tiplərə malikdirsə, onlar eynilik ola bilməz.
•	NaN qiyməti ehtiva etməyən iki eyni qiymət, yalnız onların hər ikisi

ədəddən təşkil olunubsa, eynilikdir. NaN qiyməti heç bir qiymətə, hətta
özünə belə eynilik deyil! Qiymətin, NaN qiyməti olmasını yoxlamaq üçün,
isNaN() qlobal funksiyasından istifadə etmək lazımdır.

•	Əgər hər iki qiymət sətirdirsə və bu qiymətlərin müva�iq mövqeləri eyni
simvolları ehtiva edirsə bu qiymətlər eynilikdir. Əgər sətir uzunluğuna və ya
tərkibinə görə fərqlənirsə bu qiymətlər eynilik deyil. Yadınızda saxlayın, bəzi
hallarda Unicode standartı sətir kodlaşdırılmasının bir neçə üsulunu təqdim
edir. Ancaq effektivliyin artırılması məqsədilə sətirlər ciddi simvol
uyğunluğu ilə müqayisə edilir və müqayisədən əvvəl sətirlərin
“normallaşdırılmış formada” olması güman edilir. Sətirlərin müqayisəsinin
başqa bir üsulu String.localeCompare() metodunur.

• Əgər hər iki qiymət true və ya false məntiqi qiymətlərinə malikdirsə, bu
qiymətlər eynilikdir.

•	Əgər hər iki qiymət eyni obyektə, massivə və ya funksiyaya istinad edirsə,
bu qiymətlər eynilikdir. Əgər onlar müxtəlif obyektlərə (massivlərə və ya
funksiyalara) istinad edirlərsə, onlar eynilik deyil. Hətta hər iki qiymət eyni
xüsusiyyətlərə və ya eyni elementlərə malik olduqda belə eynilik deyil.

• Əgər hər iki qiymət null və ya undefined bərabərdirsə, bu qiymətlər
eynilikdir.

Aşağıdakı qaydalar ==operatorun köməyi ilə bərabərliyin təyini üçün
tətbiq edilir:

•	Əgər iki qiymət eyni tipdəndirsə, onlar eyniliyi yoxlanırlır. Əgər qiymətlər
eynilikdirsə, onlar bərabərdir; əgər onlar eynilik deyilsə, bərabərdir deyil.

•	Əgər iki qiymət eyni tipdən deyilsə belə, bu qiymətlər bərabər ola bilər.
Tiplərin dəyişikliyi barədə qaydalar aşağıdakılardır:

• Əgər bir qiymət null-a və o biri qiyməd undefined bərabərdirsə, onda bu
qiymətlər bərabərdir.

• Əgər bir qiymət ədəddən, o biri qiymət sətirdən təşkil olunubsa, onda sətir
tipi ədəd tipinə çevriləcək və çevrilmiş qiymətlə müqayisə yerinə ediləcək.
Əgər hər hansı qiymət true-a bərabərdirsə, bu qiymət 1 qiymətinə
çevriləcək və sonra müqayisə yenidən aparılacaq.

• Əgər hər hansı qiymət false-yə bərabərdirsə, bu qiymət 0 (sıfır) qiymətinə
çevriləcək və sonra müqayisə yenidən aparılacaq.

• Əgər qiymətlərdən biri obyekt, digəri ədəddən və ya sətirdən təşkil
olunubsa, öncə obyekt elementar tipə çevriləcək və sonra müqayisə yenidən
aparılacaq. Obyekt elementar tip qiymətinə toString()-metodunun
köməyi və ya valueOf() metodunun köməyi ilə çevriləcək. JavaScript-in
baza dilinin inteqrasiya edilmiş sini�ləri əvvəlcə valueOf() dəyişikliyini,
sonra isə toString() çevrilməsini yerinə yetirməyə çalışır. Lakin burada
Date sini�i istisnadır, hansı ki, bu sinif həmişə toString() çevrilməsini
yerinə yetirir. JavaScript baza hissəsi olmayanlar obyektlər, elementar tip
qiymətlərinə reallaşdırmada müəyyən edilmiş üsulla dəyişdirilə bilər.

• Digər istənilən qiymət kombinasiyaları bərabər deyil. Bərabərliyə yoxlamaq
üçün aşağıdakı nümunəyə baxaq: "1" == true Bu ifadənin nəticəsi true-a
bərabərdir, yəni. bu müxtəlif tipdən olan qiymətlər faktiki olaraq bərabərdir.
True-un məntiqi qiyməti 1 ədədinə dəyişdiriləcək və müqayisə yenidən
aparılacaq. Daha bir nümunədə isə "1" sətiri 1 ədədinə dəyişdiriləcək.
Çünki, hər iki ədəd indi uyğundur, belə olduqda da müqayisə operatoru
true qiymətini alır.

5.4.2. Bərabərsizlik (!=) və eynilik deyil (! ==) operatorları

!= və !== operatorları yoxlamanı == və === operatorlarının əksinə yerinə yetirir.
!= operatoru əgər iki qiymət bir-birinə bərabərdirsə false, əks təqdirdə true
qiymətini alır. Eynilik deyil operatoru (!==) əgər iki qiymət eynilikdirsə false,
əks təqdirdə true qiymətini alır. Bu operator ECMAScript v3-də
standartlaşmışdır və JavaScript 1.3 və daha yuxarı versiyalarda reallaşdırılmışdır.
Gələcəkdə biz, ! operatorunu məntiqinin əməliyyatı həyata keçirmədiyinin şahidi
olacağıq. Bu operatorları != "bərabər deyil", !== isə " eynilik deyil" kimi yadda
saxlamaq məsləhətdir. Müxtəlif tiplər üçün bərabərlik və eyniliyin təyininin
təfərrüatları əvvəlki bölmələrdəki kriteriyalarla uyğundur.

5.5. Əlaqə operatorları

Bu bölmədə biz, JavaScript-də olan əlaqə operatorlarını öyrəcəyik. Bu
operatorlar, iki qiymət əlaqəni yoxlayanlar və nəticədən asılı olaraq true və ya
false qiymətini alır. Biz 6-cı fəsildə, proqramın icrasının gedişatını idarə etmək
üçün if təlimatlarında, while və digər dövr təlimatlarında geniş istifadə
edildiyinin şahidi olacağıq.

5.5.1. Müqayisə operatorları

I�ki ölçünün nisbi sırasının təyini üçün - əlaqə operatorları arasında ən çox
müqayisə operatorlarından istifadə edilir. Müqayisə operatorları aşağıdakılardır:
Kiçik (<)
< operatorun nəticəsi; əgər birinci operand ikinci operanddan kiçikdirsə, true
qiymətinə, əks təqdirdə o false qiymətinə bərabərdir.
Böyük (>)
> operatorunun nəticəsi; əgər birinci operand ikinci operanddan böyükdürsə,
true qiymətinə, əks təqdirdə o false qiymətinə bərabərdir.
Kiçik və ya bərabərdir (<=)
<=operatorun nəticəsi əgər birinci operand ikinci operanddan kiçikdirsə və ya bu
operandlar bərabərdirsə true qiymətinə, əks təqdirdə o false qiymətinə
bərabərdir.
Böyük və ya bərabər (>=)
>= operatorun nəticəsi əgər birinci operand ikinci operanddan böyükdürsə və ya
bu operandlar bərabərdirsə, true qiymətinə, əks təqdirdə o false qiymətinə
bərabərdir.
Bu operatorlar istənilən tipdən olan operandları müqayisə etməyə imkan verir.
Ancaq müqayisə yalnız ədəd və sətirlər üçün yerinə yetirilə bilər, buna görə də,

ədəd və ya sətir olmayan operandlar, dəyişdiriləcək. Müqayisə və dəyişiklik
aşağıdakı qaydada yerinə yetirilir:

•	Əgər hər iki operand ədəddirsə və ya ədədlərə dəyişdiriləcəksə, onlar ədəd
kimi müqayisə edilirlər.

•	Əgər hər iki operand sətirdirsə və ya sətirlərə dəyişdiriləcəksə, onlar sətirlər
kimi müqayisə edilir.

• Əgər bir operand sətirdirsə və ya sətirə dəyişdiriləcəksə, digəri isə ədədirsə
və ya ədədə dəyişdiriləcəksə, operator ədədi sətirə dəyişdirməyə və
müqayisəni ədəd kimi yerinə yetirməyə çalışır. Əgər sətirin tərkibi ədəd
ehtiva etmirsə, operator NaN qiymətini alır müqayisə isə false olur.
(JavaScript 1.1 versiyasında ədədin sətirə dəyişikliyi baş vermir və bu tip
arqumentlər xətaya səbəb olur və NaN qiymətini alır.)

•	Əgər obyekt həm ədədə, həm də sətirə, dəyişdirilə bilərsə, JavaScript
interpretatoru ədəd dəyişikliyini yerinə yetirir. Məsələn, Date obyektləri
ədəd kimi müqayisə edilir, yəni iki tarix arasında müqayisə əməliyyatını
həyata keçirmək olar.

• Əgər hər iki operand ədədlərə və ya sətirlərə müvəffəqiyyətlə dəyişdirilə
bilmirsə, operatorlar həmişə false qiymətini alır.

• Əgər operandlardan biri NaN qiymətinə bərabərdirsə və ya bu qiymətə
dəyişdiriləcəksə, onda müqayisə operatorunun nəticəsi false qiymətidir.

Nəzərə alın ki, sətirlərin müqayisəsi zamanı,Unicode kodlaşdırmasında hər
simvolun ədəd qiymətlərinin ciddi uyğunluğu mövcuddur. Bəzi hallarda Unicode
standartının tətbiqi ilə ekvivalent sətirlərin müxtəlif simvol ardıcıllıqlarında eyni
cür kodlaşdırılmasına icazə veririlir, amma JavaScript-in müqayisə operatorları
kodlaşdırmalarda olan bu fərqləri aşkar etmir; operator güman edir ki, bütün
sətirlər normallaşdırılmış formada təqdim edilmişdir. Diqqətli olun: sətirlərin
müqayisəsi simvol cədvəli vasitəsilə həyata keçirilir, yəni Unicode
kodlaşdırmasında (ekstremal üzrə ASCII alt çoxluğu üçün) bütün böyük hər�lər
sətirdəki digər hər�lərdən böyükdür. Bu qayda anlaşılmayan nəticələrə gətirə
bilər. Məsələn, "Zoo" sətirinin "aardvark" sətirindən böyük olduğu göstərilir.
Sətirlərin müqayisəsi zamanı String.localeCompare () metodu çox yaxşıdır, hansı
ki, lokal "əli�ba sırasının" təyinini nəzərə alır.
Fərqli uçotlu registrləri müqayisə etmək üçün əvvəlcə String.toLowerCase()
metodunun köməyilə kiçik hər�li sətirlərə və ya String.toUpperCase() metodunun
köməyilə böyük hər�li sətirlərə dəyişdirmək lazımdır.
<= (kiçik və ya bərabər) və >= (böyük və ya bərabər) operatorları iki qiymətin
bərabər olmasını bərabərlik və ya eynilik operatorlarının köməyi ilə müəyyən
etmir. "Kiçik və y Kiçik bərabər" sadəcə "deyil daha" kimi təyin edilir bərabərdir,
və (amma) operator "böyük və ya bərabər" – "deyil daha az" kimi. Tək istisna
(çıxarılma) baş verir, nə vaxt ki, operandlardan biri NaN qiymətini (mənasını)

təşkil edir (və ya dəyişdiriləcək ona); bu halda hamı (hər şey) müqayisənin dörd
operatoru false-ı qaytarır.

5.5.2. in operatoru
In operatoru tələb edir ki, sol operand sətir və ya sətirə dəyişdirilə bilən olsun.
Sağ operandla obyekt və ya massiv olmalıdır. Əgər sol qiymət sağda göstərilmiş
obyektin xüsusiyyətinin adını təşkil edərsə, operatorun nəticəsi true olacaq.
Məsələn:

var point ={x:1, y:1}; // Obyekti müəyyən edirik.
var has_x_coord = "x" in point; // true qiymətinə bərabərdir.
var has_y_coord = "y" in point; // true qiymətinə bərabərdir.
var has_z_coord = "z" in point; // false qiymətinə bərabərdir,

// bu üçölçülü nöqtə deyil.
var ts = "toString" in point; // Mənimsədilmiş xüsusiyyət,

// true qiymətinə bərabərdir.

5.5.3. instanceof operatoru

instanceof operatoru tələb edir ki, sol operand obyekt, sağ operand isə obyekt
sin�inin adı olsun. Əgər göstərilmiş obyekt solda, sini�in nüsxəsi isə sağda
göstərilmişsə nəticə true, əks halda false olacaq. Biz 9-cu fəsildə görəcəyik ki,
JavaScript-də sini�lər obyektlər onların funksiya-konstuktoru tərə�indən
inisializasiya etmiş təyin edilirlər. Beləliklə, instanceof-un sağ operandı
funksiyanın adı-konstruktorlar olmalıdır. Diqqətli olun: bütün obyekt nüsxələri
Object sini�i ilə təşkil olunmalıdır. Məsələn:

var d = new Date(); // Date() konstrukturunun köməyi ilə yeni
 // obyekt yaradırıq

d instanceof Date; // true qiymətinə bərabərdir; d obyekti
 // Date() funksiyasının köməyilə yaradılmışdır

d instanceof Object; // true qiymətinə bərabərdir; bütün obyektlər
 // Object sinifinin nüsxələrindən təşkil
 // olunur

d instanceof Number; // false qiymətinə bərabərdir
 // d Number obyektini ehtive etmir

d Number var a = [1, 2, 3]; // Massiv literalının köməyi ilə massiv
 // yaradırıq

a instanceof Array; // true qiymətinə bərabərdir a – massivdir
a instanceof Object; // true qiymətinə bərabərdir;

 // bütün massivlər obyektlərdən təşkil olunub
a instanceof RegExp; // false qiymətinə bərabərdir;

 // massiv requlyar ifadə deyil.

Əgər instanceof-un sol operandı obyekt deyilsə və ya əgər sağ operand
obyektdirsə, lakin funksiya-konstuktoruna malik deyilsə, instanceof false
qiymətini alır. Amma əgər sağ operand da obyekt deyilsə, icra zamanı xəta baş
verir

5.6. Sə�r operatorları

Əvvəlki bölmələrdə qeyd edildiyi kimi elə operatorlar var ki, sətir tipində onlar
müxtəlif funksiya malikdir.
+ operatoru iki sətir operandının birləşdirməsini yerinə yetirir. Başqa sözlə,
birinci sətirdən ibarət olan sətirə, ikinci sətirə bərabər olan yeni sətir əlavə edir.
Aşağıdakı ifadə "hello there" sətirinə bərabərdir:

"hello" + " "+ "there"

Aşağıdakı təlimatlar nəticədə "22" sətiri alınır:

a = "2";
b = "2";
c = a + b;

<, <=, > və >= operatorları iki sətiri müqayisə edir. Müqayisə əli�ba sırasına
əsaslanmışdır. 5.1.1-bölməsində qeyd edildiyi kimi, bu əli�ba sırası JavaScript-də
istifadə edilən Unicode kodlaşdırmasına əsaslanır. Bu kodlaşdırmada bütün
böyük hər�lər (latın əli�basından başlayaraq), digər sətri hər�lərdən böyükdür,
buna görə də gözlənilməz qarşılaşa bilərsiz.
Bərabərlik operatorları (==) və bərabərsizliklər (!=) yalnız sətirlərə deyil, bütün
məlumat tiplərinə tətbiq edilir və sətir tipində xüsusi bir funksiyası yoxdu.
+ operatoru xüsusidir, çünki, bu operatorun ədədlərə nisbətən sətirlərdə yüksək
prioritetlidir. Artıq qeyd edildiyi kimi, əgər + operatorunun operandlarından biri
sətirdisə, onda digər operand sətirə dəyişdiriləcək (və ya hər iki operand sətirə
dəyişdiriləcək) və konkateniruyutsya operandları, və (amma) formalaşmırlar.
Digər tərəfdən, müqayisə operatorları yalnız hər iki operand sətirlərdən təşkil
olunduqda sətir müqayisəsini yerinə yetirir yetirirlər. Əgər yalnız bir operand
sətirdirsə, onda JavaScript interpretatoru onu ədədə dəyişdirməyə çalışır.
Aşağıda bu qaydaların illüstrasiyası aparılır:

1 + 2 // Toplama. Nəticə 3-ə bərabərdir.
"1" + "2" // Bitişdirmə. Nəticə "12"-ə bərabərdir.
"1" + 2 // Bitişdirmə. 2 ədədi "2" sətirinə dəyişdiriləcək.

 // Nəticə "12"-ə bərabər olacaq.
11 < 3 // Ədədlərin müqayisəsi. Nəticə false qiymətinə bərabərdir.
"11" < "3" // Sətirlərin müqayisəsi. Nəticə true qiymətinə bərabərdir.

"11" < 3 // Ədədlərin müqayisəsi; "11" sətiri 11 ədədinə
 // dəyişdiriləcək. Nəticə false qiymətinə bərabərdir.

"one" < 3 // Ədədlərin müqayisəsi; "one" sətiri NaN qiymətinə
 // dəyişdiriləcək. Nəticə false qiymətinə bərabərdir.

Və nəhayət, qeyd etmək lazımdır ki, nə vaxt ki, + operatoru sətirlərə və saylara
tətbiq edilir, o assosativ olmaya bilər. Başqa sözlə, nəticə əməliyyatları yerinə
yetirmə sırasından asılı ola bilər. Bunu aşağıdakı nümunələrdə görmək olar:

s = 1 + 2 + "dovşan"; // Nəticə: "3 dovşan"
t = "dovşan: "+ 1 + 2; // Nəticə: "dovşan: 12"

Bu təəccüblü davranışın səbəbi odur ki, + operatoru soldan sağa (əgər
mötərizələr bu sıranı dəyişdirmirsə) işləyir. Beləliklə, son iki nümunə
aşağıdakına ekvivalentdir:

s = (1 + 2) + "dovşan"; // Birinci əməliyyatın nəticəsi ədəd; ikincinin isə
 // sətirdir

t = ("dovşan: "+ 1) + 2; // Hər iki əməliyyatın nəticəsi sətirdir

5.7. Mən�qi operatorlar

Məntiqi operatorlar adətən cəbrdə, bull əməliyyatlarının icra edilməsi üçün
istifadə olunur. Onlar if, while və for təlimatlarında bir neçə dəyişənin
iştirakıyla mürəkkəb müqayisələri həyata keçirilməsi üçün müqayisə
operatorları birlikdə tətbiq edilir.

5.7.1. Mən�qi VƏ (&&)

Məntiqi operandlarla istifadə zamanı && operatoru iki qiymətin üzərində məntiqi
əməliyyatı yerinə yetirir: bu operator yalnız birinci və ikinci operandlar true
qiymətinə bərabər olarsa, o halda true qiymətini alır. Əgər bir və ya hər iki
operand false-yə bərabərdirsə, operator false qiymətini alır.
Bu operatorun real davranışı bir qədər mürəkkəbdir. O hesablama əməliyyatına
sol operanddan başlayır. Əgər alınmış qiymət false-yə dəyişdirilə bilərsə (əgər
sol operand null, 0, "" və ya undefined-ə bərabərdirsə), operator sol ifadənin
qiymətini alır. Əks təqdirdə operator sağ operandı hesablayır və ifadənin
qiymətini qaytarır15.
Qeyd etmək lazımdır ki, sol ifadənin qiymətindən asılı olaraq bu operator sağ
ifadəni ya hesablayır ya da hesablamır. && operatorunun bu xüsusiyyətindən

qəsdən istifadə etmək də olar. Məsələn aşağıdakı JavaScript-kodunun iki sətiri
ekvivalent nəticəyə bərabərdir:

if (a == b) stop();
(a == b) && stop();

Bəzi proqramçılar (xüsusi Perl-lə işləmiş) belə stili proqramlaşdırmada təbii və
faydalı hesab edir, amma mən bu metodu sizə məsləhət görmürəm. Bu faktdır ki,
sağ tərə�in hesablanmasına zəmanət verilmir, bu da tez-tez səhvlərə gətirib
çıxardır. Aşağıdakı koda baxaq:

Perl - yuxarı səviyyəli, dinamik proqramlaşdırma dilidir. Perl 1987-ci ildə Lary Wall tərə�indən Unix script dili
kimi yaradılmışdır.
Perl Vebdə CGI� proqramlaşdırma dili kimi istifadə olunur. Bundan başqa Perl qra�ik proqramlaşdırma, sistem
proqramlaşdırma, şəbəkə proqramlaşdırmasında, bioinformatikada və digər sahələrdə istifadə olunur.

if ((a == null) && (b++ > 10)) stop();

Çox ehtimal ki, bu təlimat proqramçının güman etdiyi kimi işləməyəcək, çünki
sağ tərəfdə artım operatoru sol ifadə false-a bərabər olduğu zaman hadisələrdə
hesablanmayacaq. Bu sualtı daşı keçmək üçün, əgər prosesə bələd deyilsinizsə,
&& operatorunun sağ tərə�inə əlavə təsirlərə malik olan (mənimsəmə, artım,
dekrement və funksiya çağırışları) ifadələr yerləşdirməyin. Bu operatorun iş
prinsipinin kifayət qədər dolaşıq alqoritminə baxmayaraq, operatorun davranışı
Bull cəbri operatoru kimi kifayət qədər sadə və təhlükəsizdir. Əslində bu operator
məntiqi qiymət qaytarmır, lakin qaytardığı qiymət, həmişə məntiqi qiymətə
dəyişdirilə bilər.

5.7.2. Mən�qi VƏ (||)

Məntiqi operandlarla istifadə zamanı || operatoru iki qiymət üzərində "məntiqi
və ya" əməliyyatını yerinə yetirir: bu operator əgər birinci və ya ikinci operand (
və ya hər iki operand) true qiymətinə bərabərdirsə true qiymətini qaytarır.
Əgər hər iki operand false-yə bərabərdirsə, onda operator false qiymətini
qaytarır.
Hərçənd ki, || operatoru əksər hallarda sadəcə "məntiqi və ya" operatoru kimi
tətbiq edilir, lakin bu operatorun da, && operatoru kimi iş prinsipi mürəkkəbdir.
Operatorun işi sol operandın hesablanmasından başlanır. Əgər bu ifadənin

qiyməti true-a dəyişdirilə bilərsə, sol ifadənin qiymətini qaytarır. Əks təqdirdə
operator sağ operandı hesablayır və bu ifadənin qiymətini
qaytarır.16

&& operatorunda olduğu kimi, əgər prosesə nabələdsinizsə, əlavə təsirlərə malik
olan sağ operandlardan çəkinmək lazımdır.
Hətta || operatoru məntiqsiz tipdə olan operandları ilə tətbiq edilsə belə,
qaytarılan qiymət tipindən asılı olmayaraq məntiqi qiymət dəyişdirilə bilər.
Eyni zamanda bəzən || operatorunun harada məntiqi, harada isə, məntiqi
qiymət qaytardığı barədə çaşğınlıq yaranır. Bu yanaşmanın mahiyyəti odur ki, ||
operatorü təklif edilmiş alternativlərdən null qiymətini ehtiva etməyən (yəni
true qiymətinə dəyişdiriləcək) birinci qiyməti seçir. Sonra isə proseslər
aşağıdakı nümunədə göstərilmiş formada cərəyan edir:

// Əgər max_width dəyişəni müəyyən edilmişdirsə, onun qiymətindən istifadə
// olunur.
// Əks təqdirdə qiymət preferences obyektindən götürülür.
// Əgər obyekt (və ya obyektin max_with xüsusiyyəti) müəyyən edilməmişdirsə,
// proqramın mətnində təyin edilmiş sabitin qiymətindən istifadə olunur.
var max = max_width || preferences.max_width || 500;

5.7.3. Mən�qi İNKAR (!)

! operatoru tək operanddan əvvəl yerləşdirilən unar operatorudur. Bu operator
öz operandının qiymətini dəyişir. Belə ki, əgər a dəyişəni true qiymətini (və ya
true qiymətinə dəyişdirilə bilən) ifadə edirsə, onda !a ifadəsi false qiymətini
ifadə edir. Və əgər p && q ifadəsi false-ə bərabərdirsə (və ya false qiymətinə
dəyişdirilə bilən), onda !(p && q) ifadəsi true-a bərabərdir. Nəzərə alın ki, bu
operatoru iki dəfə tətbiq edildikdə, istənilən tipdə olan qiyməti məntiqi qiymət
dəyişdirmək olar:!! x.

5.8. Bit-təyinatlı operatorlar

JavaScript-də bütün ədədlər həqiqi ədədlərdir. Bit-təyinatlı operatorların
operandları tam ədəd olmalıdır. Bu operatorlar 32 dərəcəli quruluş ilə təqdim
edilmiş tam operandlarla (bu təqdim etməyə üzən nöqtəli operandlarlar
ekvivalent deyil) işləyirlər. Bu operatorlardan dördü Bull	cəbrinin? bit-təyinatlı
əməliyyatlarını yerinə yetirir ki, bu operatorlar əvvəlki bölmədə təsvir edilən
məntiqi operatorlara analojidir, lakin bu operatorlarda operandın hər bitinə ayrı
bir məntiqi qiymət kimi baxılır. Bit-təyinatlı digər üç operator bitlərin sola və
sağa operator bitlərin yerdəyişməsi üçün tətbiq edilir.

Bul	 cəbri	 —	 ədədi dövrələrin analiz və dizaynını təmin edən riyazi nəzəriyyədir. Rəqəmli kompüter
dövrələrinin tətbiqində, ikili dəyişənlər üzərində təyin olunan ədədi əməliyyatları göstərir. Bul cəbri ikilik say
sisteminə əsaslanır.
Məntiqi cəbrin yəni Bul cəbrinin əsası ingilis riyaziyyatçısı Corc	Bul tərə�indən qoyulmuşdur.

Əgər operandlar tam ədəd deyilsə və ya 32 dərəcəli tam ədəd aralığındı
yerləşmirsə (yəni, operand çox böyüksə), bit-təyinatlı operatorlar operandın
kəsr və 32 dərəcədən böyük ixtiyari hissəsini ixtisasa salaraq, operandları
sadəcə 32 dərəcəli tam ədəddə "yerləşdirir". Yerdəyişmə operatorları tələb
edirlər ki, sağ operandın qiyməti 0- 31 aralığında tam ədəd olsun. Yuxarıda təsvir
edilən üsullarla operandın 32 dərəcəli tam ədədə dəyişikliyindən sonra onlar
uyğun olan diapazonda ədədi alaraq ixtiyari 5-dərəcəli bitdən az hissəsi ixtisara
salınır.
Əgər siz, ikilik say sistemi ilə tanış deyilsinizsə və ya onluq say sistemində
göstərilən tam ədədlərin ikilik say sisteminə necə keçirildiyi barədə
təsəvvürünüz yoxdursa, bu bölmədə baxılan operatorların iş prinspini
anlamayacaqsınız. Buna görə də, bölmənin bu hissəsini ixtisara sala bilərsiniz. Bu
operatorlar ikilik say sistemi ilə aşağı səviyyəli (dərin) manipulyasiyalar üçün
tələb olunur. Bit-təyinatlı operatorlar JavaScript-də proqramlaşdırma zamanı
nadir hallarda tətbiq edilir.

Aşağıdakı bit-təyinatlı operatorların siyahısı göstərilir:

Bit-təyinatlı	VƏ	(&)

& operatoru operantların bit cütləri arasında "məntiqi VƏ" əməliyyatını
yerinə yetirir. Əgər bit cütləri hər ikisi 1 olarsa əməliyyatın nəticəsinə 1, əks
halda 0 əlavə edilir. Yəni ifadə 0x1234 & 0x00FF nəticədə say 0x0034-ü
verəcək.

Bit-təyinatlı	VƏ	YA	(|)

| operatoru hər bir operand üzərində "məntiqi VƏ YA" əməliyyatını yerinə
yetirir. Əgər operand cütlərindən heç olmasa biri 1 olarsa əməliyyatın
nəticəsinə 1, əks halda 0 əlavə edilir. Məsələn, 9 | 10 11 bərabərdir.

Bit-təyinatlı	istisnalı	VƏ	YA	(XOR)	(^)

^ operatoru hər bir operand üzərində "məntiqi VƏ YA" əməliyyatını yerinə
yetirir. Əgər operand cütləri bərabərdirsə əməliyyatın nəticəsinə 0, əks
halda 1 əlavə edilir. I�stisnalı VƏ YA ifadə edir ki, ya birinci, ya da ikinci
operand həqiqi ədəd olmalıdır.

Aşağıdakı cədvəldə 9 və 14 ədədləri üzərində AND, OR, XOR əməliyyatları
aparılır. Bir daha qeyd edək ki, əməliyyatlar ikilik say sistemində həyata keçirilir

9 14 AND
(8)

OR
(15)

XOR (7)

1
0
0
1

1
1
1
0

1
0
0
0

1
1
1
1

0
1
1
1

və cədvəldə əməliyyat növünün qarşısında mötərizə daxilində göstərilmiş ədəd
əməliyyatın nəticəsinin onluq say sistemində təqdim edilməsidir.

Bit-təyinatlı	İNKAR	(~)
~ operatoru tək tam
arqumentdən əvvəl

göstərilən unar operatorudur. Bu operator operandın bütün bitlərinin
inversiyasını yerinə yetirir. JavaScript-də qiymətə ~ operatorunu tətbiq
etməklə onun işarə dəyişikliyinə nail olmaq olar.

Sola	yerdəyişmə	(<<)

<< operatoru birinci operanddakı bütün bitləri ikinci operandda
göstərilmiş mövqelərin miqdarında yerləşdirir. I�kinci operanda [0 - 31]
aralığında tam ədəd olmalıdır. Məsələn, a<<1 əməliyyatında a operandının
birinci biti ikinci bitə, ikinci biti üçüncü bitə və s. yerləşdirilir. Boş qalmış
birinci bit sıfır olaraq təyin edilir və əməliyyat 32-ci bitə qədər yerinə
yetirilir. Qiymətin birinci mövqe ilə sola yerləşdirilməsi birinci operandın
2-yə, ikinci mövqe ilə – 4-də və s. vurulmasına ekvivalentdir. Məsələn, 7 <<
1 14-ə bərabərdir.

İşarənin	saxlanmasıyla	sağa	yerləşdirmə
>> operatoru birinci operanddakı bütün bitləri ikinci operandda
göstərilmiş mövqelərin miqdarında sağa yerləşdirir. I�kinci operand 0 31
aralığında tam ədəd olmalıdır. Sağ küncdəki bitlər silinir. Ən böyük bit (32-
ci) nəticənin işarəsini saxlamaq üçün dəyişmir. Əgər birinci operand
müsbətdirsə, böyük bit nəticəsi sıfırlarla doldurulur; əgər birinci operand
mən�idirsə, böyük bit nəticəsi vahidlərlə dolur. Qiymətin bir mövqə ilə sağa
yerləşdirilməsi birinci operandın (qalığın atılmasıyla) 2-yə bölünməsinə,
ikinci mövqe ilə sağa yerləşməsi 4-ə bölünmə ilə və s. ekvivalentdir.
Məsələn, 7 >> 1 3-ə ̶7 >> 1 isə 4-ə bərabərdir.

Sıfırlar	doldurmaqla	sağa	yerləşdirmə	(>>>)

>>> operatoru >> operatoruna analojidir, lakin yerləşdirmə zamanı böyük
dərəcələr birinci operandın işarəsindən asılı olmayaraq sıfırlarla dolur.

Bit-təyinatlı	 operatorla	 bağlı	 daha	 təkmil	 informasiya	 https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Operators/Bitwise_Operators	ünvanında	mövcuddur.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Bitwise_Operators%20

5.9. Mənimsəmə operatorları
4-cü fəsildə dəyişənlərin müzakirəsi zamanı, JavaScript-də dəyişənə qiymətin
mənimsədilməsi üçün = simvolundan istifadə olunduğunu qeyd etdik. Məsələn:

i = 0

Bu sətirə JavaScript-də ifadə kimi baxmaq olmaz, hansı ki, nəticəyə malikdir,
amma həqiqətdə bu ifadə və rəsmi nişanı = operatoru təşkil edir. = operatorunun
sol operandı dəyişən, massiv elementi və ya obyektin xüsusiyyəti olmalıdır.
Sağ operand isə istənilən tipdə olan istənilən qiymət ola bilər. Sağ operandın
qiyməti mənimsəmənin operatorunun qiymətidir. = operatorunun əlavə təsiri
solda göstərilmiş dəyişənə, massivin elementinə və ya xüsusiyyətə sağ
operandın qiymətinin mənimsənməsindən ibarətdir ona görə də dəyişənə,
massivin elementinə və ya xüsusiyyətə növbəti dəfə müraciət edən zamanı bu
qiymət alınacaq.
= operatorunu təşkil edir, daha mürəkkəb ifadələrə də daxil etmək olar.
Mənimsəmə və qiymətin yoxlanılması əməliyyatlarını Belə, bir ifadədə
birləşdirmək olar:

(a = b) == 0

Belə olan halda, açıq-aydın anlamaq lazımdır ki, = və == operatorları arasında
böyük fərq var! Əgər ifadədə bir neçə mənimsəmə operatoru varsa, bu
operatorlar sağdan sola hesablanırlar. Buna görə də, bir qiyməti bir neçə
dəyişənə mənimsəyən kod yazmaq olar məsələn:

i = j = k = 0;

Yenə də xatırladaq ki, hər bir mənimsəmə ifadəsi, bərabərliyin sağ tərə�in
qiymətini alır. Buna görə də, göstərilən kodda birinci mənimsəmənin (ən sağ)
qiyməti ikinci mənimsəmənin (orta) sağ tərə�i olur, o da öz növbəsində üçüncü
sonuncu sağ tərə�i olur.

5.9.1. Əməliyyatla mənimsətmə

JavaScript-də Adi mənimsətmə operatorundan başqa bir neçə əməliyyatla
mənimsətmə operatoru var ki, bu operatorlar əməliyyatla mənimsətməni
birləşdirən ixtisarlar şəklində təyin. Məsələn, += operatoru toplamanı və
mənimsətməni yerinə yetirir. Aşağıdakı ifadələr ekvivalentdir:

total += sales_tax
total = total + sales_tax

+= operatoru sətirlərlə də işləyir. Əgər bu operator ədəd operandlarını toplamağı
və mənimsətməni yerinə yetirirdisə, sətir operandlarında bitişdirməni və
mənimsətməni yerinə yetirir. Analoji olaraq, *=, &= və başqa operatorları da
uyğun əməliyyatları mənimsətmə ilə həyata keçirirlər. Bütün əməliyyatla
mənimsətmə operatorları cədvəl 5.2-də göstərilmişdir.
Adətən aşağıdakı ifadələr ekvivalentdir (burada op operatoru bildirir):

a op = b
a = a op b

Bu ifadələr yalnız, a dəyişəni funksiya çağırışı və artım operatorunun tətbiqi kimi
əlavə təsirləri ehtiva etdikdə fərqlənir.

5.10. Digər operatorlar
JavaScript-in bir neçə əlavə operator dəstəkləyir, hansı ki, bu operatorlar növbəti
bölmələrdə təsvir ediləcək.

5.10.1. Şərt operator (?:)

Şərt operator – JavaScript-də yeganə üçlük operatordur (üç operandla) və bəzən
bu operatora – "üçlük operator" da deyilir. Bu operator adətən ?: kimi yazılır,
hərçənd ki, bu yazılış proqram mətnlərində müxtəlif görünür. Operator üç
operanda malikdir, birinci operand ? operatorundan əvvəl, ikinci – ? və : operand
operatorları, üçüncü isə : operatorundan sonra yerləşir. Bu operatorlar aşağıdakı
qaydada istifadə olunur:

x > 0 ? x*y : -x*y

Şərt operatorun birinci operandı məntiqi qiymət (və ya məntiqi qiymətə dəyişə
bilən qiymət) olmalıdır. Bu əksər hallarda müqayisə ifadəsinin nəticəsi olur.
I�kinci və üçüncü operand isə istənilən qiymət ola bilər. Şərt operatoru tərə�indən
qaytarılan qiymət birinci operandın məntiqi qiymətindən asılıdır. Əgər bu
operand true qiymətinə bərabərdirsə, onda şərt ifadəsi ikinci operandın
qiymətini qəbul edir. Əgər birinci operand false qiymətinə bərabərdirsə, onda
şərt ifadəsi üçüncü operandın qiymətini qəbul edir.
Analoji nəticəni if təlimatının köməyilə almaq olar, amma belə hallarda ?:
operatorundan daha çox istifadə rahat olunur. Aşağıdakı nümunələrdə eyni
prosesin həm şərti ifadə ilə, həm də ifadə təlimatı ilə tətbiqi göstərilmişdir:

greeting = "hello "+ (username != null ? username : "there");

Bu yazı if-in növbəti konstruksiyaları ekvivalentdir, amma daha (daha çox)
yığcamdır:

greeting = "hello ";
if (username! = null)

greeting += username;
else

greeting += "there";

5.10.2. typeof operatoru

typeof unar operatoru tək operanddan əvvəl yerləşir. Bu operator istənilən tip
malik ola bilər. Bu operatorun qiyməti operandın məlumat tipini göstərən
sətirdən ibarətdir.
Əgər operandın qiyməti ədəd, sətir və ya məntiqi tipdədirsə bu operatorun
nəticəsi müva�iq olaraq "number", "string" və ya "boolean" sətiri olacaq.
Obyektlər, massivlər və null qiyməti (qəribə olsa da) üçün nəticə olaraq "object"
sətiri olacaq. Funksiya operandı üçün "function" sətiri, amma qeyri-müəyyən
operand üçün – "undefined" sətiri nəticə olaraq qeyd olunacaq.
Operand Number, String və ya Boolean obyekt-üzlüklərindən ibarət olarsa typeof
operatorunun qiyməti "object"-ə bərabər olacaq. Həmçinin Date və RegExp
obyektləri üçün də typeof operatorunun qiyməti "object"-ə bərabərdir.
JavaScript-in baza dilinin bir hissəsi olmayan, amma JavaScript-də qurulan və
müəyyən kontekstli verilənlərə malik obyektlər üçün typeof operatorunun
qaytaracağı qiymət reallaşdırmadan asılıdır. Ancaq JavaScript-in kliyent dilində
typeof operatorunun qiyməti adətən bütün kliyent və baza obyektləri üçün
"object"-ə bərabərdir.
typeof operatoru belə ifadələrdə tətbiq edilə bilər, məsələn,:

typeof i
(typeof value == "string") ? "'" + value + "'" : value

typeof operandını mötərizəyə almaq olar, bu zaman typeof açar sözü operator və
ya açar sözü kimi deyil, funksiya adı kimi görünür:

typeof(i)

bütün obyekt və massiv tipləri üçün t typeof operatorunun nəticəsi "object"
sətiri olacaq, buna görə də bu operatorun yalnız baza tipindəki obyektləri
ayırmaq üçün istifadəsi faydalı ola bilər. typeof operatorunu istənilən nəticə
vermədiyi obyekt tiplərini ayırmağın digər bir üsulu, instanceof operatorundan
və ya Object.constructor xüsusiyyətlərindən istifadə etmək olar.

Typeof operatoru ECMAScript v1 spesi�ikasiyasında müəyyən edilmişdir və
JavaScript 1.1-də və daha əvvəlki versiyalarda realizasiya edilmişdir.

5.10.3. Obyek�n yaradılmasının operatoru (new)

new operatoru yeni obyekt yaradır və inisializasiya funksiya-konstuktorunun
icrasına səbəb olur. Bu operator konstruktordan əvvəl çağrılan və aşağıdakı
sintaksisə malik olan unar operatorudur:

new konstruktor(arqumentlər)

Burada konstruktor – funksiya-konstuktoru nəticəsində əldə ifadədir.
Konstruktor-funksiyasına mötərizələrin daxilində bir-birindən vergüllərlə
ayrılmaq şərtilə istənilən qədər arqument ötürmək olar. Əgər funksiya-
konstuktoruna heç bir ötürülmürsə boş mötərizələrin daxil edilməsinə ehtiyac
yoxdur. Aşağıda new operatorundan istifadənin bir neçə nümunəsi
göstərilmişdir:

o = new Object; // Burada vacib olmayan mötərizələr ixtisara salınmışdır
d = new Date(); // Cari vaxtı ehtiva edən Date obyektini qaytarır
c = new Rectangle(3.0, 4.0, 1.5, 2.75); // Rectangle sinifinin

 // obyektini yaradır
obj[i] = new constructors [i] ();

new operatoru yeni obyekti əvvəlcə qeyri-müəyyən xüsusiyyətlərlə yaradır, sonra
isə müəyyən edilmiş funksiya-konstuktorunu icra edir ki, mötərizələrin daxilində
arqumentləri verərək prosesləri istədiyiniz kimi tənzimləyə bilərsiniz. həmçinin
this açar sözünün köməyilə indi yaradılmış obyektin funksiya-konstuktoruna
müraciət edə bilərsiniz. Bu sözün köməyilə funksiya-konstuktoru istənilən
obrazla yeni obyektə inisializiya edilə bilər obyekt istənilən lazımlı obrazla
bacarar. 7-ci fəsildə new operatoru, this və funksiya açar sözü konstruktorlar
daha ətra�lı baxılmışdır.
new operatoru həmçinin new Array() sintaksisinin köməyi ilə massivlərin
yaradılması üçün tətbiq edilə bilər. Daha ətra�lı obyektlərin və massivlərin
yaradılması və onlarla iş haqqında biz 7-ci fəsildə danışacağıq.

5.10.4. delete operatoru

delete unar operatoru göstərilmiş obyekt xüsusiyyətini, massiv elementini və ya
dəyişəni silir.17 Operator, müvəffəqiyyətlə silinmə zamanı true, əks təqdirdə
false qiymətini qaytarır. Elə dəyişənlər və xüsusiyyətlər var ki, silinə bilmir,
məsələn JavaScript-in baza və kliyent dillərinin bəzi inteqrasiya edilmiş
xüsusiyyətlərində silinmə əməliyyatını aparmaq olmur. Bundan başqa, var
təlimatının köməyilə müəyyən edilmiş dəyişənlər, istifadəçi tərə�indən silinə
bilmir. Əgər delete operatoru mövcud olmayan xüsusiyyətə tətbiq edilirsə, onda
o, true qaytarır. (Qəribə olsa da, ECMAScript standartı müəyyən edir ki, delete
operatoru həmçinin əgər operandı xüsusiyyət massiv və ya dəyişən elementi
olmadıqda belə true qiymətini qaytarır.) aşağıdakı bu operatorun tətbiqinin bir
neçə nümunəsi göstərilmişdir:

var o = {x:1, y:2}; // Dəyişəni müəyyən edirik
delete o.x; // Obyektin xüsusiyyətlərindən birini silirik; true

 // qiyməti qaytarılır
typeof o.x; // Xüsusiyyət mövcud deyil; "undefined" qiyməti

 // qaytarılır
delete o.x; // Mövcud olmayan xüsusiyyəti silirik; true qiyməti

 // qaytarılır
delete o; // Elan edilmiş dəyişəni silmək olmaz; false qiyməti

 // qaytarılır
delete 1; // Tam ədədi silmək olmaz; true qiyməti qaytarılır
x = 1; // var açar sözü olmadan dəyişəni gizli olaraq elan

 // edirik
delete x; // Bu cür elan edilmiş dəyişənləri silmək olar; true

 // qiyməti qaytarılır

Nəzərə alın ki, silinmiş xüsusiyyət, dəyişən və ya deyil massiv elementi, yenidən
undefined təyin edilmir. Xüsusiyyət silindiyi, onun mövcudluğu da itir. Bu
mövzu bölmə 4.3.2-də müzakirə edilirdi.
Başa düşmək lazımdır ki, delete operatoru xüsusiyyətin istinad etdiyi obyektə
deyil, yalnız xüsusiyyətlərə təsir edə bilir. Aşağıdakı fraqmentə baxın:

my.hire = new Date(); // my.hire Date obyektinə istinad edir
my.fire = my.hire; // my.fire həminki obyektə istinad edir
delete my.hire; // hire xüsusiyyəti silinir; true qiyməti
qaytarılır
document.write(my.fire); // Amma my.fire Date obyektinə istinad etməyə davam
 // edir.

5.10.5. void operatoru

void unar operatoru tək operanddan əvvəl göstərilir. Operand istənilən tipdə ola
bilər. Bu operatorun qeyri-adi təsiri var: o operandın qiymətini tullayaraq, bu
qiyməti undefined təyin edir. Bu operatordan əksər hallarda müştəri tərə�ində
URL-ünvana javascript: psevdoprotokola əlaməti vasitəsilə tətbiq edilir. Bu halda
brauzerdə əməliyyatın hesablanmış qiyməti əks etdirilmədən yerinə yetirilir.
Məsələn, void operatorunu HTML-teqə tətbiq etmək olar:

Yeni pəncərə aç

void operatoru ECMAScript v1-də təyin edilir və JavaScript 1.1-də realizasiya
olunur. JavaScript 1.5-də reallaşdırılmış ECMAScript v3-də undefined qlobal
xüsusiyyəti təyin edilir. Ancaq versiyalar arasında uyğunluğun saxlanılması üçün
undefined xüsusiyyətinə deyil, void 0 kimi ifadəyə müraciət etmək daha
yaxşıdır.

5.10.6. "vergül" operatoru

"vergül" operatoru (,) çox sadə operatordur. O öz sol və sağ operandını hesablayır
və sağ operandın qiymətini qaytarır. Məsələn

i=0, j=1, k=2;

Burada vergül operatoru 2-qiymətini qaytarır və praktik olaraq aşağıdakı
ekvivalentdir:

i = 0;
j = 1;
k = 2;

Bu qəribə operatorun yalnız məhdud hadisələrdə tətbiqi faydalıdır; əsasən onda,
nə vaxt ki, orada əlavə təsirlərlə bir neçə (bir qədər) müstəqil ifadə hesablamaq
tələb olunur, harada yalnız bir ifadəni buraxılır. Təcrübədə "vergül" operatoru
faktiki olaraq yalnız for təlimatıyla uyğunluqda istifadə olunur, hansını ki, biz 6-
cı fəsildə baxacağıq.

5.10.7. Massivlərə və obyektlərə girişin operatorları

3-cü fəsildə qeyd edildiyi kimi, massivin elementlərinə kvadrat mötərizələr ([])
vasitəsilə, obyektin elementlərinə isə nöqtə (.) vasitəsilə müraciət etmək olar.
JavaScript-də kvadrat mötərizələrə və nöqtəyə operatorlar kimi baxılır.
"nöqtə" operatoruna sol operand kimi obyekt, sağ operator kimi – identi�ikator
(xüsusiyyətin adı) tələb olur. Sağ operand sətir və ya sətiri ehtiva edən dəyişən

ola bilməz; bu operand hər hansı dırnaqsız xüsusiyyətin və ya metodun dəqiq adı
olmalıdır. Məsələn:

document.lastModified
navigator.appName
frames[0].length
document.write("hello world")

Əgər obyektdə göstərilən xüsusiyyət yoxdursa, JavaScript interpretatoru xəta
yaratmır, amma nəticəni undefined ifadəsinin qiyməti kimi qaytarır.
Operatorların əksəriyyəti öz operandları üçün sərbəst ifadələri icazə verir.
"nöqtə" operatoru istisnalıq təşkil edir: sağ operand qeyd-şərtsiz identi�ikator
olmalıdır.
[] operatoru massivin elementlərinə girişi təmin edir. O həmçinin "nöqtə"
operatorunun sağ operandında göstərilən obyektin xüsusiyyətlərinə
məhdudiyyətsiz girişi təmin edir. Əgər birinci operand (sol mötərizədən əvvəl
göstərilmiş) massivə istinad edirsə, onda ikinci operand (mötərizələrin arasında
göstərilmiş) tam qiymətə malik olan ifadə olmalıdır. Məsələn:

frames[1]
document.forms[i + j]
document.forms[i].elements [j++]

Əgər [] operatorunun birinci operandı obyektə istinad edirsə, onda ikinci
operand obyektin xüsusiyyəti adına uyğun olan sətir olmalıdır. Nəzərə alın ki, bu
halda ikinci operand identi�ikator deyil, sətir olur. Bu sətir, dırnaqlarla bağlanmış
sabitlə, sətirə istinad edən dəyişənlə və ya ifadəylə ola bilər. Məsələn:

document["lastModified"]
frames[0]['length']
data["val" + i]

[] operatoru adətən massivin elementlərinə müraciət üçün tətbiq edilir. Obyektin
xüsusiyyətlərinə giriş bu operatorun tətbiqi nöqtə operatoruna nisbətən
narahatdır, çünki, xüsusiyyət adları dırnaqlarla əhatələnməlidir. Ancaq obyekt
assosiativ massiv rolunda çıxış etdiyi zaman, xüsusiyyətlərin adları dinamik
yaradılır, buna görə də "nöqtə" operatorundan istifadə oluna bilmir. Məhz belə
hallarda [] operatoru tətbiq edilir. Belə vəziyyət 6-cı	 fəsildə	 baxılacaq for/in
dövründə müşahidə ediləcək. Məsələn, obyektdəki adların nəticəsi və həmin
obyektin bütün xüsusiyyətlərinin qiymətləri üçün aşağıdakı fraqmentdə for/in
dövründən və [] operatorundan istifadə olunur:

for (f in o) {
document.write('o.' + f + ' = ' + o[f]);
document.write('
');

}

5.10.8. Funksiya çağırışı operatoru

JavaScript-də funksiyaların çağırışı () operatoru üçün nəzərdə tutulmuşdur. Bu
operatorun qeyri-adiliyi ondadır ki, bu operatorda istənilən qədər operanddan
istifadə edilə bilər. Birinci operand – həmişə funksiyaya istinad edən funksiyanın
adı və ya ifadədir. Onu sol mötərizə vasitəsilə, istənilən miqdarda əlavə
operandlar müşahidə edirki, bu operandlar, bir-birindən vergüllərlə ayırılmış
sərbəst ifadə ola bilər. Son operandı sağ mötərizə müşahidə edir. () operatoru
göstərilmiş operandları hesablayır və sonra hesablanmış operandları arqument
kimi birinci operandla verilmiş funksiyaya ötürərək, funksiyanın icrasına səbəb
olur. Məsələn:

document.close()
Math.sin(x)
alert("Welcome " + name)
Date.UTC(2000, 11, 31, 23, 59, 59)
funcs[i].f(funcs[i].args[0], funcs[i].args[1])

6
Təlimatlar

Əvvəlki fəsildə biz ifadələrlə tanış olduq. İfadə – JavaScript dilində "frazalardır"
və ifadələrin hesablanması nəticəsində qiymətlər alınır. I�fadələrə daxil olan
operatorlar əlavə təsirlərə malik ola bilər, amma adətən ifadənin özü heç bir
təsirə malik olmur. Bu fəsildə JavaScript-təlimatlarının təyinatı və sintaksis
müxtəli�liyi öyrənilir. JavaScript, proqram təlimatlar dəstini təşkil edir. Siz bu
təlimatlarla tanış olduqda, proqramların yazılışına başlaya bilərsiz.
JavaScript-də təlimatlar haqqında danışmazdan əvvəl, xatırlamaq lazımdır ki, 2.4
fəsildə deyilirdi ki, JavaScript-də təlimatlar, bir- birindən nöqtəli vergüllərlə
ayrılır. Ancaq, əgər hər təlimat ayrı-ayrı sətir(lər)də yerləşirsə, JavaScript
interpretatoru onların yoxluğunu güman edir və nöqtəli vergülü qoyulmuş kimi
qəbul edir. Amma, arzuolunandır ki, yerindən asılı olmayaraq, nöqtəli vergülləri
qoymağı özünüzə vərdiş edəsiniz.

6.1. Təlimat – ifadə

JavaScript-də təlimatların hərəkəti, təlimatların ən sadə növüdür. Bu əlavə
effektlərə malik olan ifadələrdir. Biz 5-ci fəsildə bu barədə öyrəndik. Təlimat-
ifadələrinin əsas kateqoriyası – mənimsəmə təlimatlarıdır. Məsələn:

s = "Salam "+ name;
i *= 3;

++ və -- yəni, artımın və dekrementin operatorları, mənimsəmə operatorlarına
qohumdur. Mənimsəmənin icra edilməsi zamanı qiymət dəyişikliyi onlarada
təsir göstərir:

counter++;

delete operatoru əhəmiyyətli əlavə təsirə, yəni obyektin xüsusiyyətinin silinməsi
xüsusiyyətinə malikdir. Buna görə o demək olar ki həmişə təlimat kimi, qısa
ifadələrdə kimi deyil, daha mürəkkəb ifadələrdə tətbiq edilir:

delete o.x;

Funksiyaların çağrılması – təlimatı ifadələrinin daha bir böyük kateqoriyasıdır.
Məsələn:

alert("Xoş gəlmisiniz, "+ name); window.close();

Kliyent funksiyalarının bu cür çağırışları ifadələrdən, eləcə də təlimatlardan
təşkil olunur, buna görə də ancaq onlar sadəcə veb-brauzerə təsir edir.

Əgər funksiya hər hansı əlavə təsirlərə malik deyilsə və hər hansı dəyər ifadə
edirsə bu funksiya hər hansı bir dəyişənə mənimsədilir. Məsələn, praktikada heç
kimə sadəcə kosinusu hesablamaq və nəticəni göstərmək maraqlı deyil:

Math.cos(x);

Əksinə, qiyməti hesablamaq və alınan qiyməti istifadə etmək dəyişənə
mənimsətmək lazımdır:

cx = Math.cos(x);

Yenə də �ikir verin ki, nümunələrdəki hər bir sətir nöqtəli vergüllə bitir.

6.2. Tərkib təlimatlar

5-ci fəsildə gördük ki, bir neçə ifadəni "vergül" operatoru vasitəsilə bir dəyişəndə
birləşdirmək olar. JavaScript-də həmçinin bir təlimata və ya təlimatlar blokuna
bir neçə təlimat birləşdirmək olar. Bunu �iqurlu mötərizələrin daxilində istənilən
qədər təlimatlar yerləşdirməklə etmək olar. Beləliklə, JavaScript interpretatoru
tək təlimatın mövcudluğunu tələb etdiyi yerlərdə aşağıdakı sətirlərə bir təlimat
kimi baxılır və hər yerdə istifadə oluna bilər:

{
x = Math.PI;
cx = Math.cos(x);
alert("cos(" + x + ") = " + cx);

}

Nəzərə alın ki, təlimatlar bloku bir təlimat kimi hesab edilsədə, nöqtəli vergüllə
qurtarmır. Blokun daxilində ayrı təlimatlar nöqtəli vergüllərlə qurtarır, ancaq
blokun özü nöqtəli vergüllə bitmir.
Əgər "vergül" operatorunun köməyi ilə ifadələrin birləşməsi nadir hallarda
istifadə olunursa, onda kodun bloklarına təlimatların birləşməsi hər yerdə
yayılmışdır. Necə biz sonrakı bölmələrdə görəcəyik, bəziləri özü JavaScript-

təlimatlar başqa təlimatları özündə saxlayırlar (kimi ifadələr başqa ifadələri
özündə saxlaya bilər); Belə	təlimatlar	tərkib	adlanırlar.
JavaScript-in formal sintaksisi müəyyən edir ki, bu tərkib təlimatlardan hər biri
tək alt-təlimatı ehtiva edir. Təlimat bloklarında istənilən qədər təlimat
yerləşdirmək olar ki, burada heç olmasa bir alt-təlimatının mövcudluğu
mütləqdir.
JavaScript interpretatoru tərkib təlimatı icra edərkən, daxilində digər təlimatları
ehtiva edən təlimatı sicra edir. Adətən interpretator bütün təlimatları icra edir,
ancaq bəzi hallarda tərkib təlimatın icrası qə�lətən kəsilə bilər. Bu o hallarda olur
ki, tərkib təlimatda break, continue, return və ya throw təlimatı olsun və
icra və ya funksiya çağırışı zamanı xəta və ya emal edilməyən informasiya
yaransın. I�şin bu cür qə�ildən dayandırmaları haqqında biz sonrakı bölmələrdə
daha ətra�lı biləcəyik.

6.3. if təlima�

if təlimatı – JavaScript I�nterpretatoruna təlimatları icra etmək şəraitdən asılı
olaraq qərarlar qəbul etməyə imkan idarəedici təlimatdır. Təlimat iki formaya
malikdir. Birincisi: if təlimatının bu formasında əvvəlcə ifadə hesablanır. Əgər
nəticə true qiymətinə bərabərdirsə və ya true qiymətinə dəyişdirilibsə, onda
təlimat həyata keçirilir. Əgər ifadə false qiymətinə bərabərdirsə və ya false
qiymətinə dəyişdirilibsə, onda təlimat həyata keçirilmir. Məsələn:

if(username == null) // Əgər username dəyişəni null-a və ya undefined-ə

 // bərabərdirsə
username = "John Doe"; // onu müəyyən edirik

Analoji olaraq:

// Əgər username dəyişəni null, undefined, 0, "" və ya NaN qiymətinə
// bərabərdisə onda false qiymətinə dəyişdirirləcək və bu təlimat dəyişənə
// yeniqiymət mənimsədəcək
if(!username) username = "John Doe";

I�fadənin ətrafında olan mötərizələr artıq görünsə belə, bu mötərizələr if
təlimatının sintaksisinin icbari hissəsidir. Əvvəlki bölmədə qeyd edildiyi kimi, biz
həmişə tək təlimatı, təlimatlar bloku ilə əvəz edə bilərik. Buna görə də if təlimatı
bu cür də yazıla bilər:

if((address == null) || (address == ""))
{
address = "undefined";
alert("Zəhmət olmasa, poçt ünvanını göstərin.");

}

Bu nümunələrdə olan boşluqlar məcburi deyil. Onsuzda, JavaScript-də əlavə
boşluqlar və tabulyasiyalara icazə məhəl qoymur, ona görə, biz sonra qoyurduq
hər ayrı təlimata nöqtəli vergülü, bu nümunələr bir sətiri yazılmış ola bilirdi.
Burada göstərildiyi kimi sətir və boşluq simvollarının istifadəsi ilə mətnin daha
rahat oxunması və kodun başa düşülməsini yüngülləşdirir.

if təlimatının ikinci forması ifadə false qiymətini aldıqda icra edilən else
konstruksiyasını ehtiva edir. I�kinci formanın sintaksisi belədir:

if(ifadə)

təlimat1

else

təlimat2

Təlimatın bu formasında əvvəlcə ifadə hesablanır, əgər ifadə true qiymətinə
bərabərdirsə, onda təlimat1 həyata keçilir, əks təqdirdə isə təlimat2 həyata
keçirilir. Məsələn:

if(username != null)
alert("Salam"+ username + "\nMənim ana səhifəmə xoş gəlmisiniz.");

else
{

username = prompt("Xoş gəlmisiniz!\n Sizi kim deyə çağırırlar?");
alert("Salam " + username);

}

if təlimatları else blokları ilə qurulduğu zaman bəzi məqamlara diqqət
yetirmək lazımdır, yəni else-nin if təlimatına uyğun olmasından əmin olmaq
lazımdır. Aşağıdakı sətirlərə baxaq:

i = j = 1;
k = 2;
if (i == j)
 if (j == k)

document.write("i k-ya bərabərdir");
else

document.write("i j-yə bərabər deyil"); // YANLIŞ!!
Bu nümunədə daxili if təlimatı qismində yeganə xarici if təlimatı iştirak edir.
Təəssüf ki, else blokunun if-in hansı təlimatına aid olduğu aydın deyil. Və bu
nümunədə boşluqlar yanlış qoyulmuşdur, axı JavaScript interpretatoru əvvəlki
nümunəni real olaraq belə izah edir:

if (i == j)
{
 if (j == k)
 document.write("i k-a bərabərdir");

 else
 document.write("i j-a bərabər deyil"); // !
}

JavaScript qızıl qaydası (və digər proqramlaşdırma dillərinin əksəriyyəti):	else
konstruksiyası	ona	ən	yaxın	if təlimatının	hissəsidir.

Bu nümunəni oxumaq, anlamaq, müşayiət etmək üçün daha sadə və daha yüngül
üsul, �iqurlu mötərizələrdən istifadə etmək lazımdır:

if (i == j)
{
if (j == k)
{

document.write("i k-ya bərabərdir");
}

}
else
{
 // Bütün bu təzadlar fiqurlu mötərizələrin yerləşməsindən yaranır!
document.write("i j-yə bərabər deyil");

}

Əksər proqramçılar �iqurlu mötərizələrinin köməyilə sistemli şəkildə if və else
təlimatlarının (həmçinin digər tərkib təlimatlarında, məsələn, while dövrlərində
olduğu kimi) təlimat gövdəsini qururlar. Həmişə bu qaydaları tətbiqi etsəniz və
özünü bu üsula öyrəşdirsəniz, xoşagəlməz hadisələrdən rastlaşmayacaqsınız.

6.4. else if təlima�

Biz if/else təlimatının şərtin yoxlanması və yoxlamanın nəticəsindən asılı
olaraq kodun iki fraqmentindən birinin icrası üçün istifadə olunduğunun şahidi
olduq. Amma, əgər kodun bir neçə fraqmentindən yalnız birini yerinə yetirmək
tələb olunursa nə etməli? Bunu else if təlimatının tətbiqi ilə etmək
mümkündür. Bu təlimatı rəsmi olaraq, JavaScript-təlimatı sayılmır və bu yalnızca
proqramlaşdırmada təkrarlanan if/else təlimatlarının tətbiqində istifadə
olunan məşhur üsuldur:

if(n == 1)
{
 //Kod 1 blokunu icra edirik
}
else if(n == 2)
{
 //Kod 2 blokunu icra edirik

}
else if(n == 3)
{

//Kod 3 blokunu icra edirik
}
else
{
 //Əgər bütün şərtləri yerinə yetirilmirsə, blok 4- ü icra edirik
}

Bu fraqmentdə xüsusi heç nə yoxdur. Bu sadəcə if təlimatlarının ardıcıllığıdır,
yəni if-in hər təlimatı əvvəlki else konstruksiyasının hissəsidir. else if stilinə
ekvivalent, ondan daha üstün və daha aydın sintaksisi bu cür göstərmək olar:

6.5. switch təlima�

if təlimatı proqramın icra gedişatında budaqlanma yaradır. Əvvəlki bölmədə
göstərildiyi bir neçə if təlimatı vasitəsi ilə çoxölçülü budaqlanma yaratmaq olar.
Ancaq bu həmişə ən optimal çıxış yolu sayılmır. Xüsusilə əgər bütün budaqlar bir
dəyişənin qiymətindən asılıdırsa, hər bir if təlimatında eyni dəyişənin qiymətini
təkrar-təkraq yoxlamaq bəyənilməyən proqramlaşdırma üsuludur. Məhz belə
vəziyyətlərdə switch təlimatı təkrarlanan if təlimatlarına nisbətən daha çox
effektivdir. JavaScript-də switch təlimatı Java və ya C-dəki switch təlimatına
çox oxşardır. Switch təlimatını demək olar ki, if təlimatındakı kimi ifadə və kod
bloku müşahidə edir:

switch(ifadə)
{

təlimatlar
}

Lakin, switch təlimatının tam sintaksisi burada göstəriləndən də daha
yığcamdır. Kod blokunun müxtəlif yerlərində case açar sözü ilə birlikdə iki nöqtə
simvolu vasitəsilə tətbiq edilən nişanlar təyin edilir. switch təlimatı yerinə
yetirilirdiyi zamanı, təlimat ifadənin qiymətini hesablayır və sonra bu qiymətə
uyğun olan case nişanını axtarır. Əgər uyğun nişan tapılarsa, həmin nişanı
müşahidə edən birinci təlimatdan başlayaraq, kod bloku icra edilir. Əgər qiymətə
uyğun case nişanı tapılmasa, icra prosesi xüsusi hallarda təyin edilən default
nişanını müşahidə edən kod blokuna ötürülür. Əgər default nişanları təyin
edilməyibsə, kod bloku tamamilə sərbəst buraxılır. Switch təlimatının iş
prosesini sözdə izah etmək çətindir, buna görə gəlin nümunələrə keçək.

Aşağıdakı switch təlimatı əvvəlki bölmədə göstərilmiş təkrarlanan if/else
təlimatlarına ekvivalentdir:

switch(n)
{
case 1: // əgər n == 1 olarsa,
 // 1-ci kod bloku yerinə yetirilir.
 // Burada isə dayandırılır.

break;

case 2: // əgər n == 1 olarsa,
 // 2-ci kod bloku yerinə yetirilir.
 // Burada isə dayandırılır.

 break;

case 3: // əgər n == 1 olarsa,

 // 3-cü kod bloku yerinə yetirilir.
 // Burada isə dayandırılır.

 break;
default: // Əgər seçimlərin heç biri əlverişli deyilsə,
 // 4-cü kod bloku yerinə yetirilir.
 // Burada isə dayandırılır.
 break;

}

Bu fəsilin davamında təsvir edilən break təlimatı switch və ya dövr təlimatını
sona çatdırır. Switch təlimatındakı case konstruksiyaları icra edilən kodun
yalnız başlanğıc nöqtəsini verir. Break təlimatlarının yoxluğu halında switch
təlimatı ifadənin qiymətinə uyğun olan case nişanındakı kod blokunun icrasını
başlayır və icra blokun sonuna qədər davam edir. Nadir hallarda break istifadəyə
lüzum yoxdur, lakin praktikada bu təlimatla yazılan kodların 99 %-ində hər bir
case blokunda break təlimatının tətbiqi vacibdir. (switch təlimatından
funksiyanın daxilində istifadə edilərsə, break təlimatının yerinə return
təlimatını da yerləşdirmək olar. Hər iki təlimat switch təlimatının işi başa
çatdırmasına və növbəti case nişanına keçidin qarşısının alınmasına xidmət
edir.)

Aşağıda switch təlimatından istifadənin daha praktik nümunəsi göstərilmişdir;
burada sətir qiyməti göstərilən qiymət tipindən asılı olaraq dəyişdirəcək:

function convert(x)
{
switch(typeof x) {
case 'number': // Ədədi onaltılıq say siteminə dəyişdiririk
return x.toString(16);

case 'string': // Dırnaqlarla bağlanmış sətir qaytarılır
return '"' + x + '"';
case 'boolean': // Böyük hərf registri ilə TRUE və FALSE-yə

 // dəyişdirilir
return x.toString().toUpperCase();
default: // İstənilən başqa tip sətirə çevrilir
return x.toString()
}
}

Nəzərə alın ki, əvvəlki iki nümunədə case açar sözünü həm ədəd, həm də sətir
literalları müşahidə edir. Praktikada switch təlimatı məhz bu cür istifadə olunur,
ECMAScript v3 standartı case açar sözündən sonra sərbəst ifadələrin daxil
edilməsinə icazə verir18. Məsələn:

case 60*60*24:
case Math.PI:
case n+1:
case a[0]:

switch təlimatı əvvəlcə switch açar sözünün qarşısındakı ifadəni hesablayır və
sonra müva�iq qiymət tapılmayana qədər sıra ilə case ifadələrini hesablayır.
Uyğunluq faktı bərabərlik operatoru ilə deyil, eynilik operatoru ilə təyin edilir və
buna görə də ifadələr hər hansı tip dəyişikliyi olmadan uyğun gəlməlidir.
Nəzərə alın ki, əlavə təsirlərə malik (mənimsəmə və funksiya çağırışları, artım və
s. kimi) ifadələri case açar sözündə tətbiq etmək tövsiyə edilmir, çünki hər bir
switch təlimatının icrası zamanı bütün case ifadələri hesablanmır. Əlavə
təsirlərə malik ifadələrin tətbiqi yalnız bəzi hallarda işə yarayır ki, bu zaman da
proqramın davranışını qabaqcadan anlamaq çətin olur. Bütün case ifadələrini
sabitlərlə məhdudlaşdırılmaq daha təhlükəsiz üsuldur.
Əvvəl də qeyd etdiyimiz kimi, əgər heç bir case ifadələrindən heç biri switch
ifadəsinə uyğun deyilsə, switch təlimatı icranı default nişanını müşahidə edən
təlimatdan başlayır. Əgər default nişanı yoxdursa, onda switch təlimatı
tamamilə sərbəst buraxılır. Nəzərə alın ki, əvvəlki nümunələrdə default nişanı,
bütün case nişanlarından sonra, switch təlimatının gövdəsinin sonunda
yerləşdirilmişdir. Bu nişan üçün bu yer məntiqli yerdir, amma əslində bu nişan,
switch təlimatının daxilində istənilən yerdə yerləşdirilə bilər

6.6. while təlima�

if təlimatı JavaScript interpretatoruna qərarlar qəbul etməyə imkan verən baza
idarəetmə təlimatı olduğu kimi while təlimatı da – JavaScript interpretatoruna
dövri prosesləri yerinə yetirməyə imkan verən baza təlimatıdır.
Təlimat aşağıdakı sintaksisə malikdir:

while(ifadə)
təlimat

while təlimat işini ifadənin hesablanmasından başlayır. Əgər o false-yə
bərabərdirsə, JavaScript interpretatoru proqramın aşağıdaki təlimatına keçir, əks
təqdirdə, yəni true qiymətinə bərabərdisə, onda dövrün gövdəsində yer alan
təlimat(lar) icra edilir və ifadə yenidən hesablanır. I�fadənin hesablanması,
təlimatda göstərilən ifadə false-yə bərabər olana qədər davam edəcək. Yadda
saxlayın ki, ifadə false olmayınca false-yə bərabər olmayana dövr davam
edəcək. while (true) sintaksisinin köməyi ilə sonsuz silsilə yaratmaq olar.
Adətən JavaScript I�nterpretatoruna eyni əməliyyatın yenidən təkrar-təkraq
yerinə yetirilməsi tələb olunmur. Demək olar ki, hər dövrün, dövr iterasiyasında
bir və ya bir neçə dəyişən öz qiymətini dəyişir. Çünki dəyişən, dövrdə göstərilən
təlimatların icrasında iştirak edir və hər dövrdə fərqli qiymət alır. Bundan başqa,
əgər dəyişən (və ya dəyişənlər) ifadədə yer alıbsa, ifadənin qiyməti hər dövrdə
dəyişə bilər. Ümumiyyətlə	dövr	prosesində	qiymət	dəyişikliyi	əhəmiyyətli	hadisədir,
çünki	 əks	 təqdirdə,	 qiyməti	true	 olan	 ifadənin	 qiyməti	 dəyişməyəcək	 və	 dövr	 heç
vaxt	bitməyəcək! While dövrünün nümunəsi:

var count = 0;
while (count < 10)
{
document.write(count + ""); count++;

}

Gördüyünüz kimi, nümunədə count dəyişəninə başlanğıcında 0 qiymət
mənimsədilir, sonra isə onun qiyməti dövr gövdəsi icra edildiyi zaman hər dəfə
böyüyür. Dövr 10 dəfə yerinə yetirildikdən sonra, ifadə false-yə bərabər olur (
yəni. count dəyişəni artıq 10-dan kiçik olmur) və while təlimatı bitir. Bundan
sonra JavaScript proqramın növbəti təlimatına keçir. Dövrlərin əksəriyyəti count
dəyişənə analoji olaraq sayğaclara malikdirlər. Əksər hallarda dövr sayğaclarında
i, j və k adlı dəyişənlərdən istifadə olunur, hərçənd ki, kodu daha aydın etmək
üçün, sayğaclara daha aşkar adlar vermək lazımdır.

6.7. do/while dövrü

do/while dövrü bir çox əlamətinə while dövrünə bənzəyir, lakin do/while
dövründə ifadə dövrün başlanğıcında deyil, sonunda yoxlanılır. Bu isə o deməkdir
ki, dövrün gövəsi heç olmasa bir dəfə icra edilir. Bu dövrün sintaksisi belədir: do
while (ifadə) təlimatı; do/while Dövrü while dövrünə nisbətən az istifadə
olunur. Məsələ ondadır ki, təcrübədə nadir hallarda bu dövrün iş prinsipinə uyğun
vəziyyət yaranır. Məsələn:

function printArray(a)
{
if (a.length == 0)

document.write("Boş massiv");
else
{

var i = 0;
do
{

document.write(a [i] + "");
}
while(++i < a.length);

}
}

do/while və while dövrü arasında iki böyük fərq var. Birincisi, bu dövr do
(dövrün başlanğıc qiyməti üçün) və while (dövrün sonunun qiyməti və şərtinin
göstərilməsi üçün) açar sözlərindən istifadə olunmalıdır. I�kincisi, while
dövründən fərqli olaraq, do dövrü nöqtəli vergüllə bitir. Bunun səbəb odur ki, do
dövrü dövrü, dövrün gövdəsini əhatələyən �iqurlu mötərizələrlə deyil, dövrün
sonunu ifadə ilə bitir.

6.8. for təlima�

for təlimatından başlanan dövr while dövrünə nisbətən daha rahat istifadəyə
malikdir. for təlimatı əksər dövrlər üçün ümumi şablondan istifadə edir (
həmçinin daha əvvəl göstərilən while dövrünün nümunəsi). Dövrlərin
əksəriyyəti bir neçə dəyişən-sayğacına malikdir. Bu dəyişən dövrün
başlanğıcından əvvəl inisializasiya olunur və hesablanan ifadədə hər dövr
iterasiyasından əvvəl yoxlanır. Və nəhayət, dəyişən-sayğacı inkrementizasiya
edirsə və ya dövrün gövdəsinin sonunda hər hansı başqa obrazla dəyişikliyə
məruz qalırsa, bu dəyişiklik ifadənin təkrar hesablamasından bilavasitə qabaq
həyata keçirilir.
I�nisializasiya, yoxlama və yeniləmə – dövr dəyişənləri ilə yerinə yetirilən üç əsas
əməliyyatdır; for təlimatı bu üç addımı dövrün sintaksisinin açıq hissəsində

edir. Bu for dövrü ilə yerinə yetirilən əməliyyatların başa düşülməsini
yüngülləşdirir və inisializasiya və ya dövr dəyişəninin inkrementizasiyasının
unudulması kimi xətaların qarşını alır. For dövrünün sintaksisi:

for(inisializasiya; yoxlama; artım)
təlimat

for dövrünün iş prinsipini ona ekvivalent olan while dövrü ilə göstərib, izah
edək19:

inisializasiya;
while (yoxlama){

təlimat
artım;

}

Başqa sözlə, inisializasiya olunan ifadə bir dəfə dövrün başlanğıcından əvvəl
hesablanır. Bu ifadə, bir qayda olaraq, əlavə təsirlərə malik (adətən mənimsəmə)
ifadədir, ifadə çünki yalnız bu zaman faydalı olmalıdır. 1 bizim Kimi
JavaScript həmçinin, inisializasiya olunan ifadədə var təlimatı vasitəsilə
dəyişəninin elan edilməsinə icazə verir, buna görə də eyni zamanda dəyişəni elan
etmək və dövr sayğacı insiallaşdırmaq olar. Yoxlama ifadəsi hər iterasiyadan
əvvəl hesablanır və dövrün gövdəsinin yerinə yetirilib-yetirilməyəcəyini
müəyyən edir. Əgər yoxlamanın nəticəsi true olarsa, dövr gövdəsində olan
təlimat(lar) yerinə yetirilir. Dövrün sonunda isə, artım ifadəsi hesablanır. Və bu
ifadə, hər hansı fayda vermək üçün, əlavə təsirlərlə malik olan ifadə olmalıdır.
Burada adətən adi və ya mənimsəmə ifadələrində ++ və --operatordan istifadə
edilir.
I�ndi isə gəlin, əvvəlki bölmədə while dövrü vasitəsilə 0-dan 9-a qədər rəqəmləri
ekranlaşdıran nümunəni for dövrü ilə tətbiq edək:

for (var count = 0; count < 10; count++)
document.write(count + "");

Nəzərə alın ki, bu cür sintaksis dövrün işini daha aydın edərək, dövr dəyişəni
haqqında bütün vacib məlumatları bir sətirdə yerləşdirir. Bundan başqa, artım-
ifadəsinin for təlimatında yerləşdirilməsi öz-özlüyündə dövr gövdəsini
sadələşdirir; gördüyünüz kimi, hətta bizim təlimatlar blokunun
formalaşdırılması üçün �iqurlu mötərizələrə ehtiyacımız olmadı.
Əlbəttə, bu nümunələrə nisbətən daha mürəkkəb dövrlər də yaradıla bilər və bu
halda bəzən dövrün hər iterasiyasında bir neçə dəyişəninin dəyişdirilməsinə
ehtiyac yarana bilər. Bu vəziyyətdə – JavaScript-də nadir hallarda istifadə edilən
"vergül" operatorundan istifadə edilir. Sözügedən operator vasitəsilə for

dövründə bir inisializasiya və inkrementizasiya olunan ifadəyə bir neçə ifadə
birləşdirmək olur. Məsələn:

for (i = 0, j = 10; i < 10; i++, j)
sum += i * j;

6.9. for/in təlima�

JavaScript-də for açar sözü iki təlimatda istifadə edilis. Bunlardan birinin for
dövründə şahidi olduq. I�kincisi isə, for/in təlimatında istifadə olunur. Bu
təlimat – aşağıdakı sintaksisə malik olan, dövrün bir başqa növüdür:

for (dəyişən in obyekt)
təlimat

Burada dəyişən, var təlimatı ilə də elan edilə bilər. Dəyişən qismində, massiv
elementi, obyekt xüsusiyyəti, əlqərəz mənimsəmənin sol hissəsinin yarıyan
istənilən informasiya iştirak edə bilər. Obyekt parametri – obyektin adı və ya
nəticəsi obyekt olan ifadədir. Və həmişəki kimi, təlimat – dövrün gövdəsini
yaradan təlimatlar blokudur.
Massivin elementləri while və ya for dövrünün gövdəsinin hər icrası zamanı
indeks dəyişəninin artırılması seçmək kifayət qədər asandır. For/in təlimatı
obyektin bütün xüsusiyyətlərinin izafə vasitəsini verir. For/in dövrünün gövdəsi
obyektin hər bir xüsusiyyəti üçün bir dəfə həyata keçirilir. Dövrün gövdəsindən
icrasından əvvəl obyektin xüsusiyyətlərindən hər hansı birinin adı sətir şəklində
dəyişənə mənimsədilir. Sonra isə bu dəyişəni, dövrün gövdəsində [] operatorun
köməyilə obyektin xüsusiyyət qiymətinin alınması üçün istifadə etmək olar.
Məsələn, aşağıdakı for/in dövrü, obyektin bütün xüsusiyyətlərinin qiymətlərini
və adlarını çap edir:

for (var prop in my_object)
{

document.write ("ad: "+ prop + "; qiymət (məna): "+ my_object[prop], "");
}

Nəzərə alın ki, for/in dövründə dəyişən qismində mənimsəmənin sol hissəsinə
yarayan istənilən ifadə ola bilər. Bu ifadə dövrün gövdəsinin hər çağırışı zamanı
hesablanır, yəni bu ifadə hər dəfə müxtəlif qiymət ala bilər. Obyektin bütün
xüsusiyyətlərinin adlarını bu cür massivə kopyalamaq aşağıdakı qaydada
mümkündür:

var o = { x:1, y:2, z:3 };
var a = new Array();

var i = 0;
for (a [i++] in o); /* boş dövr gövdəsi */

JavaScript-də	massivlər	–	sadəcə	obyektlərin	xüsusi	tipidir. Beləliklə, for/in dövrü
massivin elementləri kimi obyektin xüsusiyyətlərinin də izafəsi üçün istifadə
oluna bilər. Məsələn, yuxarıda göstərilmiş koda bu sətiri əlavə etdikdə, təlimat 0,
1 və 2 massiv "xüsusiyyətlərinin" bir-bir sadalayır:

for (i in a) alert(i);

for/in dövrü obyektin xüsusiyyətlərinin mənimsədildiyi dəyişəni sıralamır. Ona
görə də dəyişəndəki qiymətlərin nə cür sıralandığını qabaqcadan bilmək olmur,
çünki JavaScript-in reallaşdırmaları arasında davranışlar müxtəlif ola bilər. Əgər
sadalanmamış obyektin xüsusiyyəti for/in dövrünün gövdəsində silinərsə,
onda bu xüsusiyyət sadalanmayacaq. Əgər yeni xüsusiyyətlər dövrün gövdəsində
müəyyən edilərsə, onda bu xüsusiyyətlərin sadalanması reallaşdırmadan asılıdır.
for/in dövrü əslində bütün obyektlərin bütün xüsusiyyətlərini seçmir.
Obyektlərin bəzi xüsusiyyətlərini yalnız oxuma və ya silinməyə qarşı sığortalı
yaratmaq mümkün olduğu kimi, sadalanmayan xüsusiyyətlər yaradıla bilər. Məhz
belə xüsusiyyətlər for/in dövrüylə sadalanmır. Əgər istifadəçi tərə�indən
müəyyən edilmiş bütün xüsusiyyətlər sadalanırsa, onda metodlar daxilinə
inteqrasiya edilmiş xüsusiyyətlər sadalanmır. 7-ci fəsildə şahidi olacağıq ki,
obyektə digər obyektlərdən xüsusiyyətlər varis edilə bilər. I�stifadəçi tərə�indən
müəyyən edilmiş varis olunmuş xüsusiyyətlər də, for/in dövrüylə sadalanır.

6.10. Nişanlar

Case və default nişanları: switch təlimatına uyğun olan – daha çox ümumi
hadisənin xüsusi variantıdır. I�stənilən təlimatın qarşısında göstərilmiş nişan
identi�ikatorun adı və iki nöqtə ilə qoyulmuş ola bilər:

identifikator:təlimat

Burada identi�ikator, ixtiyari JavaScript-də ehtiyata saxlanılan söz kimi deyil,
mümkün identi�ikator kimi ola bilər. Əgər nişanın adı dəyişənin və ya funksiyanın
adı ilə eynidirsə, proqramçı bundan narahat olmamalıdır, çünki nişanların adları,
dəyişənlərin və funksiyaların adlarından ayırılmışdır. while təlimatının nişanla
nümunəsi:

parser:
while (token != null)
{
// kodunuz

}

Biz təlimata nişan qoyduqda, ona ad verdikdə, bu təlimatı proqramın istənilən
yerində istifadə edə bilərik. I�stənilən təlimata nişan qoymaq olar, hərçənd ki,
adətən while, do/ while, for və for/in dövrlərində nişan qoyulur. Dövrə ad
verib, break və continue təlimatları vasitəsi ilə dövrdən çıxmaq və ya dövrün
təkrarlanmasını icra etmək olar.

6.11. break təlima�

break təlimatı ən daxili dövrdən və ya switch təlimatından təcili çıxışa səbəb
olur. Sintaksisi çox sadədir:

break;

break təlimatı dövrdən və ya switch təlimatından çıxışa səbəb olur, buna görə
də break-in belə forması yalnız bu təlimatların daxilində mümkündür. JavaScript
break açar sözü üçün nişanın adının göstərişinə icazə verir:

break:nişan_adı;
Diqqətli olun: nişan_adı –sadəcə identi�ikatordur; bunun üçün təlimat
nişanının təyini halında olduğu kimi iki nöqtə yazılmır.
break nişanla istifadə edildikdə, adlandırılmışın təlimatlar sonuna keçid olur və
ya onun icrasının dayandırılması; adlandırılmış təlimat, break ilə bağlı istənilən
xarici təlimat ola bilər. Adlandırılmış təlimat dövr və ya switch təlimatı olmağı
vacib deyil; nişanla istifadə edilmiş break təlimatının hətta dövrün və ya switch
təlimatının daxilində olmağı da vacib deyil. break təlimatlarında göstərilmiş
nişana tək məhdudiyyət – verilmiş ad xarici təlimatın break-nə bağlı olmalıdır.
Nişan if təlimatının adı və ya hətta yalnız �iqurlu mötərizələr vasitəsilə nişanın
mənimsədilməsi üçün bu bloka bağlanmış təlimatlar bloku da ola bilər.
2-ci fəsildə deyildiyi kimi, break açar sözünün və nişan adı arasında yeni sətirə
keçməyə icazə verilmir. Məsələ orasındadır ki, JavaScript interpretatoru
buraxılmış nöqtəli vergülləri avtomatik qoyur. Əgər break açar sözü ilə nişan
arasında sətir bölünübsə (yeni sətirə keçirilibsə), interpretator fərz edəcək ki, bu
break təlimatının sadə, nişansız forması nəzərdə tutulur və nöqtəli vergül əlavə
edəcək. Əvvəlki bölmələri switch təlimatında yerləşdirilmiş break təlimatının
nümunələri nümayiş etdirilirdi. break dövrlərdə adətən hadisələrdən vaxtından
əvvəl çıxış üçün istifadə olunur. Dövrdə mürəkkəb çıxış şəraiti olduqda, break
təlimatın köməyi ilə bu şəraitin bəzi hissələri daha sadə yolla reallaşdırmaq və

onların hamısının dövrün bir ifadəsi kimi daxil edilməsinə məhəl qoymamaq
olar.
Aşağıdakı kod massiv elementləri arasında müəyyən qiymət axtarışını yerinə
yetirir. Dövr sonuna kimi çatdıqda massiv təbii üsulla kəsilir; əgər axtarılan
qiymət tapılmışdırsa, massiv break təlimatının köməyilə kəsilir:

for (i = 0; i<a.length; i ++)
{

if (a[i] == target)
break;

}

break təlimatının nişanlı forması yalnız qoyulmuş dövrlərdə və ya switch
təlimatında zəruri olduqda ən daxili olmayan təlimatdan çıxmaq tələb
olunduqda istifadə olunur. Aşağıdakı nümunədə nişan qoyulmuş for dövrünü və
break təlimatı göstərilir:

outerloop:
for (var i = 0; i<10; i++)
{

innerloop:
for (var j = 0; j<10; j++)
{

if (j<3)
break; //Ən daxili dövrdən çıxış

if (i == 2)
break innerloop; //Ən daxili dövrdən çıxış

if (i == 4) break outerloop; // Xarici dövrdən çıxış
document.write ("i = " + i + " j = " + j + "
");

}
}

document.write ("FINAL i = " + i + " j = " + j + "</br>);

6.12. con�nue təlima�

continue təlimatı, break təlimatının tətbiq edildiyi dövrlərdə tətbiq edilə bilər.
Ancaq continue təlimatı dövrdən çıxmaq yerinə dövrün yeni iterasiyasına
səbəb olur. continue təlimatının sintaksisi break təlimatının sintaktsisi qədər
sadədir:

continue;

continue təlimatı həmçinin nişanla da istifadə oluna bilər:

continue imya_metki;

continue təlimatından yalnız while, do/while, for və for/in dövrlərinin
gövdəsində həm nişanlı, həm də nişansız istifadə oluna bilər. Bu təlimat,
göstərilən dövrlərdən kənar istifadəsi sintaktis xətadır. continue təlimatı yerinə
yetirildikdə, dövrün cari iterasiyası kəsilir və növbəti iterasiyası başlayır.
Müxtəlif dövr tipləri üçün fərqli davranışlar mövcuddur:
while dövründə
• dövrün başlanğıcında göstərilmiş ifadə yenidən yoxlanır və əgər ifadə true-a
bərabərdirsə, əvvəlcə dövrün gövdəsi yerinə yetirilir. do/while dövründə
• dövrün növbəti iterasiya şərti dövrün sonunda yoxlanılır
for dövründə
• artımın ifadəsi hesablanır və növbəti iterasıyanı yerinə yetirməyi müəyyən
etmək üçün yoxlama ifadəsi yenidən yoxlanır.
for/in dövründə
• dövr göstərilmiş dəyişənin adına növbəti xüsusiyyətin mənimsədilməsiylə
yenidən başlayır.
while və for dövrlərində continue təlimatının davranışında fərqlər mövcuddur
– while dövrü bilavasitə öz şərtinə qayıdır, amma for dövrü əvvəlcə artım
ifadəsini hesabladıqdan sonra şərtə qayıdır. Əvvəlki bölmədə mən while
dövrünə ekvivalent for dövr ifdəsi barədə bəhs etmişdim. Bir halda ki, continue
təlimatı bu iki dövrdə müxtəlif davranışlara malikdir, onda while dövrünün
köməyilə for dövrünü dəqiq təqlid etmək mümkün deyil.

Aşağıdakı nümunədə səhv halında dövrün cari iterasıyasından çıxmaq üçün
nişansız continue təlimatından istifadə qaydası göstərilmişdir:

for(i = 0; i < data.length; i++) {
if (data[i] == null)
continue; // Qeyri-müəyyən məlumatlarla davam mümkün deyil

total += data[i];
}

continue açar sözünün və nişan adı arasında sətirdən sətirə keçmək olmaz.

6.13. var təlima�

var təlimatı bir və ya eyni anda bir neçə dəyişəni açıq-aydın elan etməyə imkan
verir. Təlimat aşağıdakı sintaksisə malikdir:

var deyiseninAdi_1 [=qiymet_1] [,...,deyiseninAdi_n [=
qiymet_n]]

var açar sözündə elan edilən dəyişənlərin siyahısı vergül vasitəsilə nizamlanır;
siyahıda olan hər bir dəyişən ilkin mənaya, yəni xüsusi ifadə-inisializatoruna
malik ola bilər. Məsələn:

var i;
var j = 0;
var p, q;
var greeting = "hello" + name;
var x = 2.34, y = Math.cos(0.75), r, theta;

var təlimatı sadalanan hər bir dəyişəni bu adla xüsusiyyətin yaradılması yolu ilə
funksiyanın çağırış obyektində müəyyən edərək qlobal obyektdə (əlbəttə,	 elan
edilmə	 funksiyanın	 gövdəsində	 həyata	 keçirilmirsə) saxlayır. var təlimatının
köməyi ilə yaradılan xüsusiyyət və ya xüsusiyyətlər delete operatoru
tərə�indən silinə bilməz. Nəzərə alın ki, var təlimatının with təlimatının (bölmə
6.18 baxmaq) daxilində istifadəsi onun davranışını dəyişdirmir.
Əgər var təlimatında dəyişənin ilkin mənası göstərilməmişdirsə, onda dəyişən
təyin edilir, ancaq onun ilkin mənası qeyri- müəyyən (undefined) qalır. Bundan
başqa, var təlimatı for və for/in dövrlərində bilavasitə istifadə edilə bilər.
Məsələn:

for(var i = 0; i<10; i++)
 document.write(i, "</br>");

for(var i = 0, j=10; i<10; i++, j--)
 document.write(i*j, "</br>");

for(var i in o)
 document.write(i, "</br>");

JavaScript-də olan dəyişənlər və onların elanı haqqında 4-cü	fəsildə bəhs edilir.

6.14. func�on təlima�

JavaScript-də function təlimatı funksiyanı müəyyən edir və aşağıdakı
sintaksisə malikdir:

function funksiyanin_adi([arq1 [, arq2 [..., arqn]]])
{

təlimatlar
}

Burada funksiyanin_adi – müəyyən edilən funksiyanın adıdır. Bu ad sətir və ya
ifadə kimi deyil, identi�ikator kimi olmalıdır. Funksiyanın adının qarşısında
mötərizələr vasitəsilə əhatələnmiş və vergüllərlə vasitəsilə bölünmüş arqument

adlarının siyahısı olur. Bu identi�ikatorlar, funksiyanın çağırılması zamanı
göstərilmiş arqumentlərin qiymətlərinə funksiyanın gövdəsində istinad üçün
istifadə oluna bilər.
Funksiyanın gövdəsi, �iqurlu mötərizələr ilə əhatələnmiş JavaScript- təlimatların
sərbəst sayından ibarətdir. Bu təlimatların təyini zamanı funksiyalar həyata
keçirilmir. Onlar üçün funksiyanın yeni obyekti vasitəsilə kompilyasiya olunur və
funksiyanın çağırışı anında, () çağırış operatorunun köməyi ilə icra edilməyə
göndərilir. Yadınızda saxlayın, �iqurlu mötərizələr – function təlimatının icbari
hissəsidir. while və digər dövr konstruksiyaları bloklarından fərqli olaraq,
funksiyanın gövdəsi �iqurlu mötərizələri tələb edir. Hətta, əgər funksiya yalnız bir
təlimatdan ibarət olsa belə �iqurlu mötərizələri qoyulması məcburidir.
Funksiyanın təyini zamanı, funksiyanin_adi adı ilə funksiyanın yeni obyekti
yaradılır və yaradılmış obyekt xüsusiyyəti saxlanılır. Aşağıda funksiyaların
təyinin bir neçə nümunəsi verilmişdir:

function welcome()
{
alert("Mənim ana səhifəmə xoş gəlmisiniz!");

}

function print(msg)
{
document.write(msg, "</br>");

}

function hypotenuse(x, y)
{

return Math.sqrt(x*x + y*y); // return təlimatı növbəti bölmədə təsvir
 // edilmişdir

}

function factorial(n)
{ // Rekursiv funksiya
 if (n <= 1)
 return 1;
 return n * factorial(n - 1);
}

Funksiyaların təyini adətən yuxarı səviyyəli JavaScript-kodundadır. Funksiyalar
həmçinin başqa funksiyaların daxilində təyin edilə bilərlər, lakin "yuxarı
səviyyədə", yəni funksiyanın içərisində olan if təlimatları, while və ya istənilən
başqa dövr konstruksiyaları içərisində funksiyalar təyin edilə bilməz.
Rəsmi olaraq function təlimat deyil. Təlimatlar JavaScript-proqramlarında bəzi
dinamik davranışlara gətirib çıxarır, amma funksiyaların təyini proqramın statik
strukturunu təsvir edir. Təlimatlar proqram icra edilən zamanı, funksiyalar isə
analiz və ya JavaScript-kodun kompilyasiyası zamanı, yəni proqramın faktiki

icrasına qədər təyin edilir. JavaScript-in sintaktis analizatoru funksiya təyini ilə
qarşılaşdıqda, analizator funksiyanın gövdəsində təşkil olunan təlimatları təhlil
edir (icrasız) və özündə saxlayır. Sonra isə funksiyanın təyinində göstərilmiş
xüsusiyyət (əgər funksiya başqa funksiyanın daxilində təyin edilmişdirsə çağırış
obyektində; əks təqdirdə – qlobal obyektdə) müəyyən edilir. Məhz, funksiyaların
sintaktis analiz mərhələsində təyin edilməsi, bəzi maraqlı effektlərə gətirib
çıxarır. Məsələn, aşağıdakı koda baxaq:

alert(f(4)); // 16 göstərir. f() funksiyası eyni zamanda təyin edilərək
 // çağrıla bilər.

var f = 0; // Bu təlimat f xüsusiyyətinin tərkibini təyin edir.
function f(x) { // Bu “təlimat” yuxarıdakı sətirlər yerinə yetirilənə

return x*x; // qədər f funksiyasını təyin edir.
}
alert(f); // 0 göstərir. f() funksiyası f dəyişəni ilə kəsilmişdir.

Belə qeyri-adi nəticələr ona görə yaranır ki, təyin edilən zaman funksiya təyin
edilmir. Xoşbəxtlikdən, belə situasiyalara çox sıx rast gəlinmir.
Funksiya barədə daha ətra�lı 8-ci fəsildə bəhs olunur.

6.15. return təlima�

Yəqin xatırlayırsınız ki, () operatorunun köməyi ilə funksiya çağırışı ifadəni təşkil
edir. Bütün ifadələr qiymətlərə malikdir, və return təlimatı funksiya vasitəsilə
qaytarılan qiyməti təyin edir. Bu qiymət funksiyanın çağırışı zamanın funksiya
ifadəsinin qiyməti olur. eeturn təlimatı aşağıdakı sintaksisə malikdir:

return ifadə;

Təlimat yalnız funksiyanın gövdəsində yerləşdirilə bilər. Funksiyadan başqa
istənilən yerdə istifadəsi sintaktis xətadır. return təlimatı yerinə yetiriləndə,
ifadə hesablanır və onun qiyməti funksiyanın qiyməti kimi qayıdır. return
təlimatı funksiyanın icrasını dayandırır (hətta əgər funksiyanın gövdəsində
başqa təlimatlar qalsa belə). return təlimatı qiymətin qayıdışı üçün aşağıdakı
qaydada istifadə olunur:

function square(x)
{

return x*x;
}

return təlimatı həmçinin ifadəsiz istifadə oluna bilər, bu zaman təlimat heç bir
qiymət qaytarmadan sadəcə funksiyanın icrasını dayandırır. Məsələn:

function display_object (obj)
{
// Əvvəlcə biz arqumentimizin düzgünlüyündən əmin olmalıyıq
// Uyğunsuzluq zamanı funksiyanın işini dayandırırıq
if (obj == null) return;
// Burada isə funksiyanın əsas icra hissəsi yerləşir...

}

Əgər funksiyada ifadəsiz return təlimatı yerinə yetirilirsə və ya əgər funksiyanın
icrası funksiyanın gövdəsinin sona çatması ilə bitirsə, funksiya çağırışının ifadə
qiyməti qeyri-müəyyən (undefined) olur. JavaScript nöqtəli vergülü avtomatik
qoyur, buna görə də sətirdən sətirə keçərkən return təlimatını kəsmək olmaz.

6.16. throw təlima�

İstisna	 – hər hansı xüsusi vəziyyətin və ya xətanın yaranmasını göstərən
siqnaldır. I�stisnanın (throw) generasiyası – bu cür səhv və ya xüsusi vəziyyət
haqqında siqnal vermək üsuludur. I�stisnanın qarşısını almaq (catch) dedikdə,
istisna baş verdikdə onu emal etmək başa düşülür. JavaScript-də istisna yerinə
yetirilmə zamanı xəta yaranırkən, proqram onu throw təlimatının köməyi ilə
açıq-aydın yaradır. I�stisnaların qarşısı try/catch/finally təlimatının köməyi
ilə alınır ki, növbəti bölmədə bu təlimatlar təsvir edilmişdir.
Throw təlimatı aşağıdakı sintaksisə malikdir:

throw ifadə;

ifadənin Nəticəsi istənilən tipdə olan qiyməti ola bilər. Ancaq adətən bu Error
obyektidir və ya bu obyektin yarımsini�lərindən birinin nüsxəsidir. Həmçinin
ifadələri bəzi xəta kodunu ifadə edən xəta barədə məlumatı və ya xəta qiymətini
əks etdirən sətir kimi istifadə etmək olar.
Aşağıdakı nümunədə, throw təlimatı istisnanın generasiyası üçün tətbiq edilir:

function factorial(x)
{

// Əgər giriş arqumenti yararlı deyilsə, istisna yaradırıq!
if (x < 0) throw new Error("x mənfi ola bilməz");
// Əks təqdirdə qiyməti hesablayırıq və funksiyasından normal obrazla
// çıxırıq
for (var f = 1; x > 1; f *= x, x); /* boş dövr gövdəsi */
return f;

}

I�stisna yaradılırkən, JavaScript interpretatoru dərhal proqramın normal icrasını
kəsir və ən yaxın istisnanın emalı prosesinə keçir. I�stisna emalçılarında
try/catch/finally təlimatının catch konstruksiyasından istifadə olunur ki,
təsviri növbəti bölmədə bu mövzuya ətra�lı izah verilmişdir. Əgər istisna
yaradılan kodun bloku, catch konstruksiyasına malik deyilsə, bu zaman
interpretator kodun növbəti xarici blokunu təhlil edir və istisna emalçısının
blokla bağlılığını yoxlayır. Bu proses emalçı tapılmayana qədər davam edir. Əgər
istisna funksiyada yaradılıbsa və funksiya bu istisnanın emalı üçün nəzərdə
tutulmuş try/catch/finally təlimatını ehtiva etmirsə, onda istisna çağrıldığı
funksiyanın kodu üzrə yayılır. Belə istisnalar JavaScript metodlarının leksik
strukturuna uyğun olar yuxarı çağırış steki üzrə yayılır. Əgər istisna emalçısı
tapılmasa, istisnaya xəta kimi baxılır və istifadəçiyə bu haqda xəbərdarlıq
ebdilir.
throw təlimatı ECMAScript v3-də standartlaşdırılmışdır və JavaScript 1.4-də
reallaşdırılmışdır. Error sini�i və həmçinin onun yarımsini�ləri ECMAScript v3
standartının bir hissəsidir, amma onlar JavaScript 1.5-ə qədər
reallaşdırılmamışlar.1.
JavaScript-də throw və try/catch/finally təlimatı C++ və Java-dakı müva�iq
təlimatlara uyğundur.

6.17. try/catch/finally təlima�

Try/catch/finally təlimatı JavaScript-də istisnaların emal mexanizmini
reallaşdırır. Bu təlimatda try konstruksiyası sadəcə emal edilən istisnaların kod
blokunu müəyyən edir. Try blokunda olan istisnalara catch konstruksiyasında
baxılır. Catch konstruksiyasını təmizləmə kodunu ehtiva edən finally bloku
davam etdirir. Bu blokda, proseslər try blokundan asılı olmayaraq yerinə
yetirilir. catch və finally bloku məcburi hissə sayılmır, ancaq try blokundan
sonra onlardan heç olmasa biri mütləq daxil edilməlidir. try, catch və finally
blokları �iqurlu mötərizələrlə əhatələnməlidir. Bu sintaksisin məcburi hissəsidir
və heç bir halda ixtisara salına bilməz (hətta blokda yalnız bir təlimat varsa belə).
throw təlimatı kimi, try/ catch/finally təlimatı da ECMAScript v3-də
standartlaşdırılmışdır və JavaScript 1.4-də reallaşdırılmışdır.
Növbəti fraqmentdə try/catch/finally təlimatının sintaksisi və mahiyyətini
təsvir edilir. Nəzərə alın, xüsusi halda, catch açar sözünü mötərizələrdə
identi�ikator müşahidə edir. Bu identi�ikator funksiyanın arqumentinə oxşardır.
O yalnız catch blokunun gövdəsində mövcud olan lokal dəyişənin adını

mənimsəyir. JavaScript istisnanın generasiyası zamanı göstərilmiş istisnanın və
ya qiymətin obyektini bu dəyişənə mənimsəyir:

try
{

// İstisana olmadıqda bu kod başlanğıcdan sona qədər icra edilir.
// Amma hər hansı istisna yaranarsa, bu istisna ya bilavasitə throü
// təlimatının ya da istisnanı emal edə bilən funksiyanın köməyilə
// emal edilir.

}
catch(e)
{

// Bu blokda təlimatlar yalnız blokda istisna yarankən icra edilir.
// Bu təlimatlar e lokal dəyişəndən istifadə edə, Error obyektinə
// və ya throw təlimatlarında göstərilmiş digər qiymətlərə istinad edə
// bilər. Yaxud hər hansı obrazla istisnanı emal etməmək, bu istisnanaya
// əhəmiyyət verməmək, başqa nəsə icra etmək və ya istisnanı throw
// təlimatının köməyilə yenidən yaratmaq olar.

}
finally
{

// Bu blok təlimatları try blokundan asılı olmayaraq həmişə yerinə
// yetirilən yəlimatları ehtiva edir. Bu blok kod try bloku ilə
// kəsildiyi zaman aşağıdakı hallarda istifadə edilir:
// 1) blokun normal obrazla sona çatdırılması üçün
// 2) break, continue və ya return təlimatları üçün
// 3) daha əvvəl göstərilən catch blokuyla emal edilmiş istisnalar üçün
// 4) Öz-özünə davam edən yuxarı səviyyəli istisnalar üçün

}

I�ndi isə gəlin try/catch təlimatının daha praktik nümunəsi ilə tanış olaq.
Nümunədə əvvəlki bölmədə göstərilmiş factorial() və prompt() metodlarından,
həmçinin çıxış məlumatını ekranlaşdırmaq üçün JavaScript-in kliyent dilinin
alert() metodundan istifadə edilir:

try
{

// İstifadəçidən ədəd daxil etməyi xahiş edirik
var n = prompt("Xahiş edirik müsbət ədəd daxil edin edin", "");
// Daxil edilən ədədin düzgünlüyünü güman edərək onun faktorialını
hesablayırıq.
var f = factorial(n);
// Nəticəni göstəririk
alert(n + "! = "+ f);

}

catch (ex)
{

// Əgər daxil edilmiş məlumatlar səhvdirsə, biz blokun icrasına keçəcəyik
alert(ex) ; // Xəta haqqında istifadəçiyə bildiririk

}

Bu nümunə finally konstruksiyası olmadan try/catch təlimatının
nümunəsidir. Hərçənd finally, catch-a nisbətən sıx istifadə olunmur, bununla
belə bəzi hallarda bu konstruksiya faydalı olur. Ancaq finally konstruksiyanın
davranışı əlavə izahat tələb edir. Finally bloku proseslərı, try blokundan, asılı
olmayaraq həyata keçirir. Bu imkandan adətən try təkli�indəki kodun icrasından
sonra təmizləmə üçün istifadə olunur.
Adi vəziyyətdə mexanizm try blokunun sonuna kimi çatır və sonra finally
blokuna keçir ki, burada bütün lazımlı təmizləmələr yerinə yetirilir. Əgər
idarəetmə return, continue və ya break təlimatları vasitəsilə try blokundan
çıxdısa, idarəetmənin kodun digər hissəsinə ötürülməsindən əvvəl finally
bloku həyata keçir.
Əgər try blokunda istisna yaranırsa və onun emalı üçün uyğun catch-in uyğun
bloku varsa, idarəetmə əvvəlcə catch blokuna, sonra isə finally blokuna
ötürülür. Əgər lokal catch bloku yoxdursa, onda idarəetmə - əvvəlcə finally
blokuna, sonra isə yaranan istisnanı emal edə bilən ən yaxın xarici catch
blokuna ötürülür.
Əgər finally blokunun özündə idarəetmə return, continue, break və ya
throw təlimatının köməyilə (və ya istisna yaradan metodun çağırılması ilə)
qurulubsa, onda bitməmiş komanda ləğv edilir və yeni komanda yerinə yetirilir.
Məsələn, əgər finally blokunda istisna yaradılarsa, bu istisna finally
blokundan kənarda yaradılmış istənilən istisnanı əvəz edir. Əgər finally
blokunda return təlimatı varsa, blokda yaradılan emal edilməmiş istisnanın
mövcudluğuna baxmayaraq metoddan normal çıxış edilir.
try və finally təlimatları catch konstruksiyası olmadan birlikdə istifadə oluna
bilər. Bu halda finally blokundan – sadəcə təmizləmə kodu kimi istifadə edilir
ki, buradakı proseslər try blokundakı break, continue və ya return
təlimatlarının mövcudluğundan asılı olmayaraq yerinə yetiriləcək. Məsələn,
aşağıdakı kodda try/finally təlimatı istifadə olunur. Nümunədə göstərilir ki,
dövrün sayğacı hər bir təkrarında sonunda, hətta əgər təkrar continue
təlimatının vasitəsilə kəsilsə belə, inkrementasiya (bir vahid artma) olsun:

var i = 0, total = 0;
while (i < a.length)
{
try
{

if ((typeof a[i]! = "number") || isNaN(a[i])) // Əgər bu ədəd deyilsə,
continue; // növbəti dövr iterasiyanına keçirik.
total += a[i]; // Əks təqdirdə ümumi ədədi ümumi cəmə əlavə edirik.

}
finally
{

i++; // continue təlimatının mövcudluğundan asılı
// olmayaraq həmişə i dəyişənini bir vahid artırırıq.

}
}

6.18.with təlima�
4-cü fəsildə biz dəyişənlərin görünmə sahəsini və görünmə sahələrinin zəncirini
müzakirə etdik – obyektlərin siyahısı, hansılarda ki, dəyişən adına icazə vaxtı
axtarış yerinə yetirilir. with təlimatı görünmə sahələri zəncirinin müvəqqəti
dəyişikliyi üçün istifadə olunur. Bu təlimat aşağıdakı sintaksisə malikdir:

with(obyekt)
təlimat

Bu təlimat, obyekti görünmə sahələri zəncirinin başlanğıcına əlavə edir, təlimatı
icra edir, və sonra görünmə sahələri zəncirini ilkin vəziyyətində bərpa edir.
Təcrübədə with təlimatı yığılan mətnin həcmini əhəmiyyətli dərəcədə
azaltmağa kömək edir. JavaScript-in kliyent dilində bu təlimatdan adətən
obyektlərin dərin təyin edilmiş iyerarxiyaları zamanı istifadə edilir. Məsələn,
HTML-formanın elementlərinə giriş üçün sizə, belə ifadələrdən istifadə etmək
lazım olacaq:

frames[1].document.forms[0].address.value

Əgər bu formaya bir neçə dəfə müraciət etmək lazımdırsa, formanın görünmə
sahələri zəncirinə əlavə edilməsi üçün with təlimatından istifadə etmək olar:

with (frames[1].document.forms[0])
{

// Burada bilavasitə formanın elementlərinə müraciət edirik, məsələn:
name.value = "";
address.value = "";
email.value = "";

}

Bu proqramın mətninin həcmini azaldır – bundan sonra frames[1]
xüsusiyyətinin hər bir adından əvvəl document.forms[0] fraqmentini
göstərmək lazım deyil. Bu obyekt görünmə sahələri zəncirinin müvəqqəti
hissəsini təşkil edir və axtarışda avtomatik iştirak edir.
Bu konstruksiyanın rahatlığına baxmayaraq bəzi hallarda, onun istifadəsi
dəstəklənmir. JavaScript-də with təlimatı kodu optimallaşdırmağa yönəlib və
buna görə də kodunuz, with təlimatı istifadə edilməyən ekvivalent kod ilə
nisbətdə daha yavaş işləyə bilər. Bundan başqa, funksiyaların təyinləri və with
təlimatının bədənində dəyişənlərin inisializasiyası bu səbəblərdən rezultatam.1

anlaması üçün qəribələrə və çətinlərə with təlimatından istifadə etməyə gətirə
bilər tövsiyə edilmir. Bundan başqa mövcuddurlar və yığılan mətnin həcminin
azaldılmasının başqa tamamilə qanuni üsulları. Belə, əvvəlki nümunə aşağıdakı
qaydada köçürtmək olar:

var form = frames[1].document.forms[0];
form.name.value = "";
form.address.value = "";
form.email.value = "";

6.19. Boş təlimat

Və nəhayət, son olaraq – boş təlimat barədə danışaq. O buna bənzəyir:

;

Boş təlimatın icrası heç bir effektə və təsir malik deyil. Bu səbəbdən düşünmək
olar ki, onun tətbiqi üçün xüsusi lüzum yoxdur, ancaq bəzi hallarda boş təlimat
faydalı ola bilər. Məsələn boş gövdəyə malik olan dövr yaratmaq tələb olunduqda.

// a massivinin inisializasiyası
for(i=0; i < a.length; a[i++] = 0);

Nəzərə alın ki, for və while dövrlərində və ya if təlimatında sağ yumru
mötərizədən sonra nöqtəli vergülün ixtiyarsız göstərişi aşkar edilməsi çətin olan
xoşagəlməz xətalara gətirib çıxara bilər. Məsələn, aşağıdakı fraqmentin xətalı
olduğu söyləmək çətindir:

if ((a == 0) || (b == 0)); // Axı bu sətir heç nə etmir...
o = null; // amma bu sətir həmişə yerinə yetirilir.

Xüsusilə, boş təlimat tətbiq edilərkən, kodu multi-sətir şərhlərlə təşkil etmək
arzu olunandır. Məsələn:

for (i=0; i < a.length; a [i++] = 0); /* boş dövr gövdəsi */

7
Obyektlər və massivlər

3-cü fəsildə obyektlər və massivlər barədə deyilirdi ki, obyektlər və massivlər –
JavaScript-də iki fundamental və ən əhəmiyyətli məlumat tipidir. Obyektlər və
massivlər ədəd və sətir tipi kimi elementar məlumat tiplərindən fərqlənir, çünki
onlar özlərində istənilən qədər qiymət və qiymət dəsti ehtiva edə bilərlər. Obyekt,
adlandırılmış xüsusiyyətlərin məcmusudur, massivlər isə ixtisaslaşmış
obyektlərdən təşkil olunub ki, onları da nömrələnmiş qiymətlərin məcmusu kimi
adlandırmaq olar. Bu fəsildə biz JavaScript dilinin obyektləri və massivləri ətra�lı
tanış olacağıq.

7.1. Obyektlərin yaradılması

Obyektlər – bir neçə qiyməti vahid modulda birləşdirməyə, saxlamağa və onları
adları üzrə çıxartmağa imkan verən tərkib məlumat tipidir. Başqa sözlə
desək,obyektlər – xüsusiyyətlərin nizamlanmamış məcmusudur ki, bu
xüsusiyyətlərin hər birinin öz adı və qiyməti olur. Obyektdə saxlanılan
adlandırılmış qiymətlər ədəd, sətir tipi kimi elementar məlumatı tiplərində və ya
özləri də obyekt ola bilər. Obyektlərin yaradılmasının ən sadə üsulu obyektin
proqrama obyekt literalının əlavə edilməsidir.
Obyekt	 literalı – �iqurlu mötərizələrin daxilində, vergüllərlə bölünmüş
xüsusiyyətlərin ("ad – qiymət" cütlüyü) siyahısıdır. Hər bir xüsusiyyətin adı
JavaScript-identi�ikatorı və sətirləri ilə, qiyməti isə sabit və ya JavaScript ifadəsi
ola bilər. Aşağıdakı nümunədə obyektlərin yaradılmasının bir neçə üsulu
göstərilmişdir:

var empty ={}; // Xüsusiyyətlərisiz obyekt
var point ={ x:0, y:0 };
var circle ={ x:point.x, y:point.y+1, radius:2 };
var homer = {

"name": "Homer Simpson",
"age": 34,
"married": true,
"occupation": "plant operator",

'email': "homer@example.com"
};

Obyekt	literalı – yeni obyekt yaradan ifadədir və bu ifadənin hesablanması zamanı
hər dəfə inisializasiya edilir. Beləliklə, əgər literalı dövr və ya çağrılan funksiya
daxilində yerləşdirsək, bir obyekt literalı köməyi ilə bir çox yeni obyekt yaratmaq
olar.
new operatoru da obyektlərin yaradılmasının bir başqa üsuludur. Bu operatorun
tətbiqi zamanı obyektin xüsusiyyətlərinin inisializasiyasını yerinə yetirən
funksiya-konstuktorunun adını da göstərilməlidir. Məsələn:

var a = new Array(); // Boş massiv yaratmaq
var d = new Date (); // Cari vaxt və tarix obyekti yaratmaq
var r = new RegExp (" javascript", "i"); // Requlyar ifadə obyekti yaratmaq

Burada nümayiş etdirilmiş Array(), Date() və RegExp() JavaScript-in baza
dilindən inteqrasiya edilmiş funksiya-konstruktorlarıdır. Object() konstruktoru
{} obyekt literalı kimi boş obyekt yaradır. Yeni yaradılan obyektlərin
inisializasiyası üçün şəxsi konstruktorları müəyyən etmək imkanı da mövcuddur.
Bu proses, 9-cu fəsildə göstərilmişdir.

7.2. Obyektlərin xüsusiyyətləri

Adətən obyektin xüsusiyyətlərinin qiymətlərinə giriş üçün nöqtə operatorundan
istifadə olunur. Operatorun sol hissəsindəki qiymət, xüsusiyyətlərinə giriş
ediləcəyi obyektə istinad etməlidir. Adətən bu obyektə əsaslananın dəyişənin adı
olur, amma mümkün JavaScript-ifadəsi də obyekt ola bilər. Operatorun sağ
tərə�indəki qiymət xüsusiyyətin adı olmalıdır. Burada sətir və ya ifadə deyil,
mütləq halda identi�ikator olmalıdır. Belə ki, əgər o obyektinin p-ı xüsusiyyətinə
müraciət etmək istəyiriksə o.p ifadəsindən, circle obyektinin radius
xüsusiyyətinə müraciət etmək istəyiriksə circle.radius ifadəsindən istifadə edə
bilərik. Obyektin xüsusiyyətləri dəyişənlər kimi işləyir: onlarda qiymətlər
saxlamaq və bu qiymətləri oxumaq olar. Məsələn:

// Obyekt yaradırıq və dəyişən vasitəsilə bu obyektə istinad edirik.
var book = new Object(); // Obyektdə xüsusiyyət təyin edirik.
book.title = "JavaScript-in əsasları"

// Başqa xüsusiyyətlər də təyin edirik. Daxil edilmiş obyektlərə fikir verin.
book.chapter1 = new Object();
book.chapter1.title = "JavaScript-ə giriş";
book.chapter1.pages = 11;
book.chapter2 ={

title: "Leksik struktur",
pages: 6

};

// Obyektdəki xüsusiyyətlərin qiymətlərinin ekranlaşdırılması.
alert ("Başlıq: "+ book.title + "\n\t" +

"1-ci fəsil "+ book.chapter1.title + "\n\t" +
"2-ci fəsil "+ book.chapter2.title);

Bu nümunədə bir məqamı nəzərə almaq əhəmiyyətlidir ki, obyektə yeni
xüsusiyyəti əlavə etmək üçün sadəcə xüsusiyyətə qiymət mənimsətmək
kifayətdir. Əgər dəyişənlərin var açar sözünün köməyilə elan edilməli zərurəti
varsa, onda bu imkan obyektinin xüsusiyyətləri üçün (və imkanlar) yoxdur.
Bundan başqa obyektin xüsusiyyətinin yaradılmasından sonra (mənimsəmə
nəticəsində) aşağıdakı formada, istənilən zaman sadə mənimsəməylə onun
qiymətini dəyişdirmək mümkün olacaq:

book.title = "JavaScript: Kərgədanlı kitab";

7.2.1. Xüsusiyyətlərin sadalanması

6-cı fəsildə qeyd edildiyi kimi for/in dövrü vasitəsilə obyektin xüsusiyətlərini
sadalamaq olar. Bu dövri ssenarilərin yaradılması zamanı və ya obyektlərlə
işləyərkən qabaqcadan adları naməlum olan ixtiyari xüsusiyyətlə istifadə etmək
olar. Aşağıdakı fraqmentdə obyektdə xüsusiyyətləri sadalayan funksiya nümayiş
etdirilir:

function DisplayPropertyNames(obj) {
var names = "";
for(var name in obj) names += name + "\n";
alert(names);

}

Nəzər alın ki, for/in dövrü nizamsız verilmiş xüsusiyyətləri sadalamır və bu
dövr istifadəçi tərə�indən müəyyən edilmiş bütün xüsusiyyətləri sadalamasına
baxmayaraq, qabaqcadan müəyyən edilmiş bəzi xüsusiyyətlər və metodlar
sadalanmır.

7.2.2. Obyektdə xüsusiyyə�n mövcudluğunun yoxlaması

Obyektdə xüsusiyyətlərin mövcudluğunun yoxlaması üçün in operatorundan (5-
ci fəsildə göstərilmişdir) istifadə oluna bilər. Bunun üçün operatordan sol tərəfdə

sətir şəklində xüsusiyyətin adı yerləşir, sağ tərəfdə isə yoxlanan obyekt
göstərilməlidir. Məsələn:

// Əgər o obyekti "x" adlı xüsusiyyətə malikdirsə, qiymət təyin edilir
if (" x" in o) o.x = 1;

Ancaq in operatorundan çox sıx istifadə edilmir, çünki mövcud olmayan
xüsusiyyətə müraciət zamanı undefined qiyməti qaytarılır. Beləliklə, göstərilən
fraqment aşağıdakı qaydada yazıla bilər:

// Əgər x xüsusiyyəti mövcuddursa, deməli onun qiyməti undefined-ə bərabər
// deyil və belə olan halda xüsusiyyətə qiymət təyin edirik.
if (o.x! == undefined) o.x = 1;

Nəzərə alın ki, bu zaman xüsusiyyət faktiki mövcudluğuna ehtimal var və sadəcə
olaraq xüsusiyyət müəyyən edilməmiş ola bilər. Məsələn, əgər bu cür sətiri
yazsaq:

o.x = undefined

o obyektinin x xüsusiyyəti mövcud olacaq, lakin qiyməti olmayacaq. Bu halda
göstərilmiş fraqmentlərdən birincisində x xüsusiyyətinə 1 qiyməti əlavə
ediləcək, ikincisində isə əlavə edilməyəcək.
Bundan başqa, nəzərə alın ki, burada != operatorun yerinə !== operatorundan
istifadə edilmişdi. ! == və === operatorları undefined və null qiymətləri bir-
birindən ayıra bilir, hərçənd ki, bəzən buna da ehtiyac yoxdur:

// Əgər doSomething xüsusiyyəti mövcuddursa və null və ya undefined qiymətini
// ehtiva etmirsə, onda fərz etmək ki, bu funksiyadır və onu çağırmaq
// lazımdır!
if (o.doSomething) o.doSomething();

7.2.3. Obyek�n xüsusiyyə�nin silinməsi

Obyektdəki xüsusiyyətlərin silinməsi üçün delete operatoru nəzərdə
tutulmuşdur:

delete book.chapter2;

Nəzərə alın ki, xüsusiyyətin silinməsi zamanı xüsusiyyətin qiymətini undefined
müəyyən edilməsi ilə də mümkündür, lakin delete operatoru ilə xüsusiyyət
obyektdən tamamilə silinir. Bu fərqi for/in dövrü açıq-aydın göstərir: belə ki, o
qiymət mənimsədilməmiş, undefined qiyməti ehtiva edən xüsusiyyətləri
sadalayır, lakin silinmiş xüsusiyyətləri sadalamır.

7.3. Obyektler assosia�v massivlər qismində

Biz artıq bilirik ki, obyektin xüsusiyyətlərinə giriş "nöqtə" operatoru vasitəsilə
həyata keçirilir. Obyektin xüsusiyyətlərinə giriş həmçinin [] operatorun köməyilə
də mümkündür ki, bu operator adətən massivlərlə işləyərkən tətbiq edilir.
Beləliklə, aşağıdakı iki JavaScript-ifadəsi eyni qiymətə malikdir:

object.property
object ["property"]

Nəzərə alın ki, bu iki sintaksis bir-birilə əhəmiyyətli fərqlənir. birinci variantda
xüsusiyyət adı identi�ikatordan, ikincidə variantda isə sətirdən təşkil olunub. Bu
fərqin niyə belə əhəmiyyətli olduğunu tezliklə özünüz anlayacaqsınız.
Java, C, C++ və digər viddi tipləşdirilmə olan dillərdə obyekt xüsusiyyətləri yalnız
təsbit edilmiş sayda ola bilər və bu xüsusiyyətlərin adları qabaqcadan müəyyən
edilmiş olmalıdır. Bir halda ki, JavaScript – zəif-tipləşdirilmiş dil sayılır, onda bu
qaydalar yaranır; proqram istənilən obyektdə istənilən qədər istifadə edilməyən
xüsusiyyət yarada. Ancaq obyektin xüsusiyyətinə giriş üçün "nöqtə"
operatorundan istifadə edilən zaman xüsusiyyətin adı identi�ikatorla yazılır.
I�denti�ikatorlar JavaScript-proqram mətninin bir hissəsi olmalıdır – identi�ikator
məlumat tipi deyil və onlar ilə proqramdan manipulyasiya etmək olmaz.
Eyni zamanda massiv notasiyalarının köməyilə obyektin xüsusiyyətinə müraciət
zamanı xüsusiyyətin adı [] daxilində sətir şəklində yazılır. JavaScript-də sətirlər –
məlumat tipi olduğu üçün proqram gedişatında, yaradıla və dəyişdirilə bilər. Və
buna görə də JavaScript-də aşağıdakı formada kod yazmaq olar:

var addr = "";
for (i = 0; i < 4; i++)
{
addr += customer ["address" + i] + '\n';

}

Bu fraqmentdə customer obyektinin address0, address1, address2 və address3
xüsusiyyətləri bir sətirdə birləşdirilərək oxuna bilir.
Bu qısa nümunə, sətir ifadələrinin köməyilə obyekt xüsusiyyətlərinə müraciət
edərkən massiv notasiyalarını necə elastik olduğu görünür. Biz bu nümunəni
"nöqtə" operatorunun köməyilə də yaza bilərdik, amma elə vəziyyətlər var ki,
orada massiv notasiyalarının istifadəsi uyğun gəlir. Fərz edək ki, siz istifadəçinin
maliyyə bazarındakı investisiyalarının cari məbləğini hesablamaq üçün şəbəkə
resurslarına müraciət edən proqram yazmalısınız. Proqram istifadəçiyə istənilən
mövcud səhm adını, həmçinin hər bir səhm növünün miqdarını daxil etməyə

imkan verir. Hər səhm növü üçün bir xüsusiyyətə malik olan portfolio adlı
obyektin köməyilə bu informasiyanın saxlanılmasını təşkil etmək olar.
Xüsusiyyətin adı – səhm adı, xüsusiyyətin qiyməti isə, bu növ səhmlərin
miqdarıdır. Başqa sözlə, məsələn əgər, istifadəçidə IBM 50 səhmi varsa, onda
portfolio.ibm xüsusiyyəti 50 qiymətini ehtiva edir.
Bu proqramın bir hissəsində, istifadəçidən onda olan səhmlərin adını və sonra
bu növ səhmlərinin miqdarını sorğulayan dövr təşkil olunmalıdır. Dövrün
daxilindəki kod aşağıdakı formada ola bilər:

var stock_name = get_stock_name_from_user();
var shares = get_number_of_shares();
portfolio [stock_name] = shares;

Bir halda ki, istifadəçi səhmlərin adını proqramın icrası zamanı daxil edir, onda
xüsusiyyət adlarını qabaqcadan bilmək olmur. Bu səbəbdən, proqramın yazılışı
zamanı xüsusiyyətlərin adları naməlum olur və belə olduğu halda portfolio
obyektinin xüsusiyyətlərinə "nöqtə" operatorunun köməyilə giriş qeyri-
mümkündür. Bu halda obyektin xüsusiyyətlərinə [] ancaq operatorunun köməyilə
müraciət etmək olar, çünki bu operatorda üçün xüsusiyyət adı identi�ikatorla
(hansı ki, bilavasitə proqram mətnində göstərilir) deyil, sətir qiyməti (hansı ki,
bu qiymət icra zamanı dəyişə bilər) göstərilir.
Adətən obyektin bu formada istifadəsi, assosiativ massiv adlanır. Assosativ
massiv, sərbəst qiymətlərlə, sərbəst sətirlər arasında əlaqə yaradan verilənlər
strukturudur. Bu vəziyyəti izah etmək üçün adətən map terminindən istifadə
olunur: JavaScript-obyektləri öz qiymətlərini (xüsusiyyətlərin adları) sətirləri
kimi əks etdirir.
Obyektlərin xüsusiyyətləri giriş üçün nöqtədən (.) istifadə onları C++ və Java
dillərində statik obyektlərə bənzədir və bu operator lazımi vəziyyətdə öz işini
yaxşı görür. Amma onlar həmçinin sərbəst sətirlərlə qiymətlərin (mənaların)
əlaqəsi üçün güclü vasitəni verirlər. Bu cəhətdən JavaScript obyektlər daha çox
Perl-də massivlərə oxşardır, nə qədər C++-da və ya Java-da obyektlərə. 6-cı
fəsildə for/in dövrü daxil edilmişdi. JavaScript əsl gücü assosiativ massivlərlə
istifadə zamanı aydın hiss olunur. Məsələn səhmlər portfeliylə qayıdaq. I�stifadəçi
tərə�indən öz portfeli üzrə məlumatların daxil edilməsindən sonra sonuncu
ümumi cari qiyməti aşağıdakı kod vasitəsilə hesablamaq olar:

var value = 0;
for (stock in portfolio) {
// Portfeldəki hər bir səhmin bir səhm üzrə dəyərini əldə edirik və
// onu səhmlərin miqdarına vururuq

value += get_share_value(stock) * portfolio[stock];
}

Burada for/in dövrü alternativi yoxdur, çünki, səhmlərin adları qabaqcadan
məlum deyil. Bu üsul, portfolio adlı assosiativ massivdən (JavaScript-obyekti)
xüsusiyyət adlarının çıxardılmasının yeganə həllidir.

7.4. Universal Object sinifinin xüsusiyyətləri və metodları

Artıq qeyd edildiyi kimi, JavaScript-dəki bütün obyektlərin metodları və
xüsusiyyətləri Object sini�indən varis olur. Belə olan halda Date() və ya
RegExp() kimi ixtisaslaşmış obyekt sini�ləri, öz konstruktorları ilə yaradılmasına,
daxilinə şəxsi xüsusiyyət və metodlar müəyyən edilməsinə baxmayaraq, bütün
obyektlər kimi öz mənşələrini ilk olaraq Object sini�indən götürür və bu sini�in
dəstəklədiyi xüsusiyyət və metodlar onlar üçün də əlçatandır. Onların
universallığı səbəbdən bu xüsusiyyətlər və metodlar xüsusi marağı təqdim edir.

7.4.1. constructor xüsusiyyə�

JavaScript-də istənilən obyekt constructor xüsusiyyətinə malikdir ki, bu obyektin
inisializasiyası üçün istifadə edilən funksiya-konstuktoruna istinad edir. Məsələn,
əgər d obyekti Date()-konstruktorunun köməyilə yaradılırsa, onda d.constructor
xüsusiyyəti Date funksiyasına istinad edir:

var d = new Date ();
d.constructor == Date; // true-ya bərabərdir

Konstruktor funksiyası kateqoriya, sinif və ya obyekti müəyyən edir, buna görə
də constructor xüsusiyyəti verilmiş ixtiyari obyektin tipinin təyini üçün istifadə
oluna bilər. Məsələn, obyektin tipini bu yolla aydınlaşdırmaq olar:

if ((typeof o == "object")&&(o.constructor == Date))
// Date obyekti ilə hər hansı davranış...

constructor xüsusiyyət qiymətini instanceof operatorunun köməyilə yoxlamaq
olar, yəni yuxarıda göstərilən fraqmentı bu cür yazsaq:

if ((typeof o == "object")&&(o instanceof Date))
// Date obyekti ilə hər hansı davranış...

7.4.2. toString() metodu

toString() metodu arqument tələb etmir; o sətiri qaytarır, hər hansı obrazda
təqdim edilən tipi və/və ya obyektin qiymətinin sətirə çevirir. JavaScript
interpretatoru obyekti sətirə dəyişdirmək tələb olunan bütün hadisələrdə
obyektin bu metodunu çağırır. Məsələn, alert() və ya document.write() kimi
metodlarda + operatoru vasitəsi sətirlə obyektin birləşdirilməsi və ya obyektin
ötürülməsi zamanı toString() metodu çağrılır. toString() metodu susmaya
görə çox informativ deyil. Məsələn, aşağıdakı fraqment sadəcə s dəyişəninə "
[object Object]" sətirini yazır:

var s ={
x:1,
y:1

}.toString ();

Bu metod xüsusilə faydalı məlumatları susmaya görə əks etdirmir, buna görə də
bir çox sini�lər toString() metodunun şəxsi versiyalarını müəyyən edir.
Məsələn, massiv sətirə dəyişdirildikdə, biz massiv elementlərinin hər biri sətirə
dəyişdirilərək siyahı şəklində təqdim olunacaq, amma funksiya sətirə
dəyişdirildikdə, nəticə olaraq, biz bu funksiyanın mənbə kodunu alacağıq.
9-cu fəsildə obyektlərin öz şəxsi tipləri üçün toString() metodunu yenidən
təyin etmək olunması qaydası göstərilir.

7.4.3. toLocaleString()

ECMAScript v3-də və JavaScript 1.5-də Object sini�i toString() metoduna
əlavə olaraq toLocaleString() da metodunu müəyyən edir. Sonun təyinatı
obyektin lokallaşmış sətir ilə təqdim edilməsindən ibarətdir. Object sini�ində
susmaya görə müəyyən edilən toLocaleString() metodu heç bir lokallaşdırma
yerinə yetirmir; o həmişə toString() qaytardığı sətiri qaytarır. Ancaq
yarımsini�lər toLocaleString() metodunun şəxsi versiyalarını müəyyən edə bilər.
ECMAScript v3-də Array, Date və Number sini�ləri lokallaşmış qiymətlər qaytaran
toLocaleString() metodunun versiyalarını müəyyən edir.

7.4.4. valueOf() metodu

valueOf() metodu demək olar ki toString() metoduna bənzəyir, amma bu
meod obyekti sətirdən başqa hər hansı elementar tipdə (adətən ədəd tipində)
olan qiymətə dəyişdirmək tələb olunan zaman çağrılır. Əgər obyekt elementar
tipdə olan qiymət kontekstində istifadə olunursa JavaScript interpretatoru bu
metodu avtomatik çağırır. valueOf() metodu susmaya görə heç nə yerinə

yetirmir, amma obyektlərin bəzi inteqrasiya edilmiş kateqoriyaları (məsələn,
Date.valueOf()) valueOf() metodunu yenidən təyin edir. 9-cu fəsildə
obyektlərin şəxsi tiplərində valueOf() metodunu yenidən təyin edilməsi
qaydası təsvir edilmişdir.

7.4.5. hasOwnProperty() metodu

hasOwnProperty() metodu əgər tətbiq edildiyi obyektdə, öz tək sətir
arqumentində göstərilmiş ada uyğun varis olunmuş xüsusiyyət müəyyən
edilməmişsə, true qiymətini qaytarır. Əks təqdirdə bu metod false qiymətini
qaytarır. Məsələn:

var o = {};
o.hasOwnProperty("undef"); // false: xüsusiyyət təyin edilməyib
o.hasOwnProperty("toString"); // false: toString – varis olunmuş

// xüsusiyyətdir
Math.hasOwnProperty("cos"); // true: Math obyektində cos xüsusiyyəti

// mövcuddur

Xüsusiyyətlərin varisliyi barədə 9-cu fəsildə bəhs olunur.
hasOwnProperty() metodu ECMAScript v3 standartıyla təyin edilir və JavaScript
1.5-də və daha gec versiyalarda realizasiya edilmişdir.

7.4.6. propertyIsEnumerable() metodu

propertyIsEnumerable() metodu əgər obyektdə metodun tək sətir arqumentində
göstərilmiş ada müva�iq xüsusiyyəti təyin edilibsə və bu xüsusiyyət for/in
dövrüylə sadalana bilirsə true qiymətini qaytarır. Əks təqdirdə metod false
qiymətini qaytarır. Məsələn:

o.propertyIsEnumerable("x"); // true: xüsusiyyət təyin olunub və
 // sadalana bilir

o.propertyIsEnumerable("y"); // false: xüsusiyyət təyin olunmayıb
o.propertyIsEnumerable("valueOf"); // false: xüsusiyyət sadalana bilmir

propertyIsEnumerable() metodu ECMAScript v3 standartıyla təyin edilir və
JavaScript 1.5-də və daha gec versiyalarda realizasiya edilmişdir. Yadınızda
saxlayın ki, istifadəçi tərə�indən müəyyən edilən bütün obyekt xüsusiyyətləri
sadalanandır. Sadalana bilməyən xüsusiyyətlər adətən varis olmuş xüsusiyyətlər
(xüsusiyyətlərin varisliyi mövzusuna 9-cu fəsildə baxılır) olur, buna görə də
praktik olaraq bu metod həmişə hasOwnProperty() metodunun qaytardığı
qiyməti qaytarır.

7.4.7. isPrototypeOf() metodu

isPrototypeof() metodu əgər arqument qismində ötürülən metodun aid
olduğu obyekt, obyekt-prototipində mövcuddursa true qiymətini qaytarır. Əks
təqdirdə metod false qiymətini qaytarır. Məsələn:

var o = {};
Object.prototype.isPrototypeOf(o); // true: o.constructor == Object
Object.isPrototypeOf(o); // false
o.isPrototypeOf(Object.prototype); // false
Function.prototype.isPrototypeOf(Object); // true:

// Object.constructor == Function

7.5. Massivlər

Massiv – nömrələnmiş qiymətləri ehtiva edən məlumat tipidir. Hər bir
nömrələnmiş qiymət massivin elementi adlanır. Bu elementə bağlı nömrə (ədəd)
isə, onun indeksi adlanır. JavaScript-in tipləşdirilməmiş dil olduğunu əsas
götürərək, massivin elementi istənilən tipə malik ola bilər. Həmçinin, bir
massivin elementləri müxtəlif tiplərdə ola bilər. Massivin elementləri hətta başqa
massivləri özündə ehtiva edə bilər ki, bu da bizə massivlərin massivlərini
yaratmaq imkanı verir.
Kitab boyunca biz ayrı-ayrı məlumat tiplərini ehtiva edən obyektlərin və
massivlərə şahidi olduq. Bu faydalı və səmərəli sadələşdirmə – JavaScript-də
obyektlər və massivlər proqramlaşdırmanın məsələlərinin əksəriyyəti üçün
müxtəlif tiplər kimi baxmaq olar. Ancaq ki, obyektlərin və massivlərin davranışını
anlamaq yaxşıdır: massiv – bu deyil ki, başqa, əlavə funksionallığın incə qatıyla
obyekt kimi. Bu görmək olar, typeof operatorunun köməyi ilə massivin tipi
müəyyən edib – "object" sətiri alınacaq.
Kvadrat mötərizələr ilə massiv literalının köməyilə bir-birindən vergüllərlə
ayrılmış sadə siyahılı massiv yaratmaq olduqca asandır. Məsələn:

var empty = []; // Boş massiv
var primes = [2, 3, 5, 7, 11]; // Massiv beş ədəd elementindən ibarətdir
var misc = [1.1, true, "a"]; // 3 müxtəlif tipdə olan element

Massivin literalındakı qiymət mütləq surətdə sabit olmamalıdır və buraya
istənilən ifadə yerləşdirilə bilər:

var base = 1024;
var table = [base, base+1, base+2, base+3];

Massiv literalları özündə obyekt literallarını və ya başqa massiv literallarını
ehtiva bilər:

var b = [[1,{ x:1, y:2}], [2,{ x:3, y:4}]];

yeni yaradılmış massivdə massiv literalının birinci qiyməti 0-indeksli elementdə,
ikinci qiymət isə, 1-indeksli elementdə, və s. yerləşir. Əgər literalda elementin
qiyməti qeyri-müəyyən qiymətlə təyin edilmişdirsə, onda massiv elementləri
həmin qiymət aralığında yaradılacaq:

var count = [1, 3]; // 3 elementli massiv, orta element müəyyən
// edilməmişdir.

var undefs = [,]; // 2 elementli massiv, hər iki element müəyyən
// edilməmişdir.

Massivin yaradılması Array() konstruktorunun çağırışı ilə də mümkündür.
Konstruktoru üç müxtəlif üsulla çağırmaq olar:

•	Konstruktorun	arqumentlərsiz	çağırışı:

var a = new Array();

Bu zaman boş massiv yaradılacaq və bu [] hal literalına ekvivalentdir.

•	Massiv	elementlərinin	qiymətlərini	konstruktorda	açıq-aydın	göstərmək	olar:

var a = new Array(5, 4, 3, 2, 1, "testing, testing");

Bu halda konstruktorda arqumentlər siyahısını əmələ gəlir. Hər bir
arqument isə, elementin qiymətini müəyyən edir və bu arqumentlər
istənilən tipdə ola bilər. Massiv elementlərinin nömrələnməsi 0-dan
başlanır. Massivin length xüsusiyyəti sayəsində konstruktora verilmiş
elementlərin miqdarı müəyyən edilir.

•	Massivin	uzunluğunu	müəyyən	edən	bir	ədəd	arqumentli	çağırış:

var a = new Array(10);

Bu forma göstərilən miqdarda massiv elementi yaradır (hansı ki, bu
elementlərin hər biri undefined qiyməti ehtiva edir) və arqumentdə
göstərilmiş ədəd massivin length xüsusiyyətinin qiyməti olaraq təyin edilir.
Massiv uzunluğu qabaqcadan məlumdursa Array()-konstruktoruna bu cür
müraciətin forması, ilkin yerləşdirmə üçün istifadə oluna bilər. Analoji
vəziyyətdə massivlərin literallarının narahatdır.

7.6. Massivin elementlərinin oxunması və yazılması

massivin elementlərinə Giriş [] operatorun köməyilə həyata keçirilir.
Mötərizələrdən solda massivə istinad olmalıdır. Mötərizələrin daxilində mən�i
olmayan tam qiymətə malik sərbəst ifadəni olmalıdır. Bu sintaksis yararlıdır
oxuma üçün yararlı olduğu kimi, massivin elementinə qiymətin yazılılması üçün
də yararlıdır. Beləliklə, aşağıdakı göstərilən JavaScript-təlimatlarından istifadə
etmək mümkündür:

value = a[0];
a[1] = 3.14;
i = 2;
a[i] = 3;
a[i + 1] = "hello";
a[a [i]] = a[0];

Bəzi dillərdə massiv elementlərinin indeksləşməsi 1-dən başlayır. Ancaq
JavaScript-də (C, C++ və Java-da olduğu kimi) massivin birinci elementi indeksi
0-a bərabərdir.
Artıq qeyd edildiyi kimi, [] operatoru həmçinin obyektin adlandırılmış
xüsusiyyətlərinə giriş üçün istifadə oluna bilər:

my['salary'] *= 2;

Bir halda ki, massivlər obyektlərin ixtisaslaşmış sini�idir, onda massivlərə
istənilən qədər xüsusiyyətlərini müəyyən etmək və onlara nöqtə və []
operatorları vasitəsilə müraciət etmək olar.

Yadınızda saxlayın ki, massiv 232 ̶ 1 indeksli mənfi olmayan ədəd olmalıdır.

Əgər	indeks	ədədi	çox	böyükdürsə,	mən�idirsə	və	ya	həqiqi	ədəddirsə	(və	ya	məntiqi,
obyekt	 və	 başqa	 qiymətdirsə),	 JavaScript	 onu	 sətirə	 dəyişdirəcək	 və	 dəyişdirilmiş
sətirə	massiv	indeksi	kimi	deyil,	obyekt	xüsusiyyəti	kimi	baxacaq. Beləliklə, aşağıdakı
sətirdə yeni massiv elementi deyil, – 1.23" adlı yeni xüsusiyyət yaradılacaq

a[1.23] = true;

7.6.1. Massivə yeni elemen�n əlavə edilməsi

C və Java kimi dillərdə, massiv elementləri təsbit edilmiş saya malikdir, hansı ki,
massivin yaradılması zamanı müəyyən edilməlidir. Bu JavaScript-ə aid deyil –

JavaScript-də massiv elementləri istənilən miqdarda ola bilər və bu miqdarı
istənilən vaxt dəyişdirmək olar.
Massivə yeni element əlavə etmək üçün, ona qiymət mənimsəmək kifayətdir:

a[10] = 10;

JavaScript-də Massivlər seyrəldilmiş ola bilər. Bu isə o deməkdir ki, massiv
indeksləri mütləq ədədlərin fasiləsiz diapazonuna aid deyil; JavaScript
reallaşdırması yalnız faktiki mövcud olan massiv o elementləri yaddaş ayırır.
Buna görə də aşağıdakı fraqmentin icrası nəticəsində JavaScript interpretatoru
ehtimal ki, yalnız 0 və 10 000 indeksli massivin elementləri yaddaş ayıracaq,
onların arasında olan 9 999 element üçün yaddaş ayrılmayacaq:

a[0] = 1;
a[10000] = "bu element 10,000";

Nəzərə alın ki, massiv elementləri həmçinin obyektlərə də əlavə edilə bilər:

var c = new Circle (1,2,3);
c[0] = "bu obyektdə massivin elementidir!";

Bu nümunə sadəcə "0" adlı obyektin yeni xüsusiyyətini müəyyən edilir. Ancaq
obyektə massiv elementinin əlavə edilməsi obyekti massiv etmir.

7.6.2. Massiv elementlərinin silinməsi

delete operatoru massivin elementinin qiymətini undefined təyin edir və bu
halda massiv elementi öz mövcudluğunu davam edir. Belə ki, elementlərin
silinməsi, qalan elementləri də düzgün yerləşdirmək üçün, massiv metodlarından
istifadə etmək lazımdır. Array.shift() metodu birinci elementini, Array.pop()
metodu isə massivin son elementini silir.
Array.splice() metodu – elementlərin fasiləsiz diapazonda silir. Bu funksiyalar
fəsilin sonunda təsvir ediləcək.

7.6.3. Massivin uzunluğu

I�stər Array()-konstruktorunun köməyilə, istərsə də massiv literalının köməyilə
müəyyən edilmiş bütün massivlər, elementlərin miqdarını ehtiva edən spesi�ik
length xüsusiyyətinə malikdir. Bir halda ki, massivlər qeyri-müəyyən miqdarda
elementlərə malik ola bilər, bu �ikri daha dəqiq və qısa ifadə edək: length
xüsusiyyəti həmişə massiv elementinin ən böyük nömrəsi qədər vahiddən
böyükdür. Adi obyekt xüsusiyyətlərindən fərqli olaraq, massivin length-i

xüsusiyyəti massivə yeni elementlərin əlavə edilməsi zamanı avtomatik
yenilənir. Bu şərait aşağıdakı fraqmentdə təsvir edilir:

var a = new Array(); // a.length == 0 (heç bir element müəyyən
 // edilməmişdir)

a = new Array(10); // a.length == 10 (0-dan 9-a qədər müəyyən edilmiş
 // boş element)

a = new Array(1,2,3); // a.length == 3 (0-dan 2-yə qədər müəyyən edilmiş
 // element)

a = [4, 5]; // a.length == 2 (0 və 1 elementləri müəyyən
 // edilmişdir)

a[5] = -1; // a.length == 6 (0, 1 və 5 elementləri müəyyən
 // edilmişdir)

a[49] = 0; // a.length == 50 (0, 1, 5 və 49 elementləri müəyyən
 // edilmişdir)

Xatırladaq ki, massiv indeksləri 232 - 1 aralığında olmalıdır, yəni, length
xüsusiyyətinin mümkün olan maksimal xüsusiyyət qiyməti 232 - 1 bərabərdir.

7.6.4. Massiv elementlərinin dövrü

length xüsusiyyətindən əksər hallarda dövrlərdə massiv elementlərinin
sadalanması üçün istifadə olunur:

var fruits = [" manqo", "banan", "albalı", "şaftalı"];
for (var i = 0; i < fruits.length; i++)

alert (fruits[i]);

Əlbəttə, bu nümunədə güman edilir ki, massiv elementləri fasiləsiz
yerləşdirilmişdir və element 0-dan başlanırlar. Əgər bu belə deyilsə, massivin hər
bir elementinə müraciətdən əvvəl, elementin müəyyənliyini yoxlamaq lazımdır:

for (var i = 0; i < fruits.length; i++)
if (fruits [i]! = undefined)

alert (fruits [i]);

Analoji yanaşma Array() konstruktorunun çağırışı ilə yaradılmış massiv
elementlərinin inisializasiyası üçün də istifadə oluna bilər:

var lookup_table = new Array (1024);
for (var i = 0; i < lookup_table.length; i++)
lookup_table [i] = i * 512;

7.6.5. Massivin ar�mı və ix�sarı

Massivin length xüsusiyyəti oxuma üçün əlçatan olduğu kimi, yazı üçün də
əlçatandır. Əgər qiymətə length xüsusiyyətini təyin etsək, massivin uzunluğu cari
uzunluğdan, yeni uzunluğa qədər qısaldılır; yeni diapozona istənilən element,
indeks ixtisara salınır və qiymətləri itir. Əgər length xüsusiyyətini cari
uzunluğdan böyük təyin etsək, onda, massivin cari qiyməti, yeni ölçüyə qədər
artır və massivə yeni qeyri-müəyyən elementlər əlavə edilir.
Nəzərə alın ki, hobyektlərə massiv elementləri mənimsədilə bilməsinə
baxmayaraq, obyektlər length xüsusiyyətini dəstəkləmir. Bu xüsusiyyət və onun
xüsusi davranışı – məxsusi olaraq massivlərə aiddir və bu onları obyektlərdən
fərqləndirən əlamətlərdən biridir. Massivləri obyektlərdən fərqləndirən əlamətlər
– Array sini�i vasitəsilə müəyyən edilən və bölmə	7.7-də təsvir edilən müxtəlif
massiv metodlardır.

7.6.6. Çoxölçülü massivləri

JavaScript-də bu cür massivləri, massivin massivləri adlandırsaq daha düzgün
çıxar, çünki JavaScript "əsl" çoxölçülü massivləri dəstəkləmir. Massivlərin
massivindəkı məlumat elementinə giriş üçün [] operatorundan iki dəfə istifadə
etmək kifayətdir. Məsələn, fərz edək ki, matrix dəyişəni – ədəd massivlərinin
massividir. matrix[x] istənilən elementi – ədədlərin massividir. Massivdə
müəyyən ədədə giriş üçün matrix[x][y] yazmaq lazımdır. Aşağıda konkret
nümunə göstərilmişdir ki, nümunədə ikiölçülü massivdən vurma cədvəli kimi
istifadə olunur:

// Çoxölçülü massiv yaradırıq
var table = new Array(10); // Cədvəldə 10 sütun var
for(var i = 0; i < table.length; i++)
table[i] = new Array(10); // Hər sütunda 10 sətir var

// Massivin inisializasiyası
for(var row = 0; row < table.length; row++) {

for(col = 0; col < table[row].length; col++) {
table[row][col] = row*col;

}
}

// Çoxölçülü massivin köməyilə 5*7 hasilinin hesablanması
var product = table[5][7]; // 35

7.7 Massiv metodları

[] massivlərlə Array sini�iylə verilən müxtəlif metodlara vasitəsi ilə işləmək olar.
Bu metodlar aşağıda bölmələrdə təqdim edilmişdir. Metodlardan bir çoxu Perl
proqramlaşdırma dilindən götürülmüşdür; ona görə bu metodlar Perl-lə işləmiş
proqramçılara onlar tanış görünə bilər.

7.7.1. join() metodu

Array.join() metodu massivin bütün elementlərini sətirlərə dəyişdirir və onları
bir sətirdə birləşdirir. Alınmış yekun sətirdə elementlərin bir-birindən ayrılması
üçün nəzərdə tutulmuş vacib olmayan sətir arqumentini də göstərmək olar. Əgər
ayırıcı göstərilməyibsə, ayırıcı qismində vergüldən istifadə olunur. Məsələn,
aşağıdakı fraqment nəticədə "1,2,3" sətirini verir:

var a = [1, 2, 3]; // Göstərilən elementlləri ehtiva edən massiv yaradılır
var s = a.join(); // s == "1,2,3"

Növbəti nümunədə vacib olmayan ayırıcı təyin edilir, başqa nəticəyə alınır:

s = a.join(", "); // s == "1, 2, 3" vergüldən sonra boşluğa diqqət edin.

Array.join() metodu sətirin bölünməsi yolu ilə massiv yaradan String.split()
metodunun əksidir.

7.7.2. reverse() metodu

Array.reverse() metodu massivdəki elementlərin ardıcıllıq istiqamətini əks
istiqamətdə dəyişdirir və alınmış yeni massivi qaytarır. Bu metod əməliyyatı
massiv üzərində edir, başqa sözlə, elementləri elementlər üzərində işləyərkən
yeni massivi yaratmır, əməliyyat mövcud massivin üzərində edir. Məsələn,
aşağıdakı fraqmentdə, reverse() və join() metodları istifadə olunur, nəticədə isə
proqram "3,2,1" sətirini verir:

var a = new Array (1,2,3); // a[0] = 1, a[1] = 2, a[2] = 3
a.reverse(); // indi isə, a[0] = 3, a[1] = 2, a[2] = 1
var s = a.join(); // s =="3,2,1"

7.7.3. sort() metodu

Array.sort() metodu massiv üzərində massivin elementləri çeşidləyir və
çeşidlənmiş massivi qaytarır. Əgər sort() metodu arqumentlərsiz çağırılırsa,

onda o massivin elementlərini əli�ba sıra ilə (zəruri olduqda müvəqqəti
preobrazuya onlar müqayisənin icra edilməsi üçün sətirlərə) çeşidləyir:

var a = new Array (" banana", "cherry", "apple");
a.sort();
var s = a.join (", "); // s == "apple, banana, cherry"

Çeşidləmə zamanı qeyri-müəyyən elementlər massivin sonuna keçir.
Əli�ba sırasından başqa hər hansı sırada çeşidləmə üçün sort() metoduna
arqument təyin edərək müqayisə funksiyası qurmaq olar. Qurulan funksiyada,
göstərilmiş iki arqumentdən biri çeşidlənmiş siyahının əvvəlində olmalıdır. Əgər
birinci arqument ikincidən əvvəl olmalıdırsa, müqayisə funksiyası mən�i rəqəmi
qaytarır. Əgər çeşidlənmiş massivdə birinci arqument ikincidən sonra
gəlməlidirsə, onda funksiya sıfırdan ən böyük ədədi qaytarır. Və əgər iki qiymət
bir-birinə ekvivalentdirsə (yəni, onların yerləşməsə sırası əhəmiyyət daşımırsa),
müqayisə funksiyası 0 qiymətini qaytarır. Buna görə də, məsələn, elementin
əli�ba sırasında deyil, ədəd sırasında çeşidləməsi üçün aşağıdakı formadan
istifadə etmək olar:

var a = [33, 4, 1111, 222];
a.sort(); // Əlifba sırası: 1111, 222, 33, 4
a.sort(function(a,b) { // Ədəd sırası: 4, 33, 222, 1111

return a-b; // < 0, 0, və ya > 0 olan ədədləri qaytarır
});

a və b çeşidləmə qaydasından asılı olaraq nəzərə alın ki, bu fraqmentdə
funksional literaldan istifadə etmək olduqca rahatdır. Müqayisə funksiyası yalnız
bir dəfə çağırıldığına görə, funksiyaya ad verməyə ehtiyac yoxdur.
Massivin elementlərinin çeşidləməsinin daha bir nümunəsi kimi registrə həssas
olmayan əli�ba sırasını yerinə yetirə bilərsiniz, bunun üçün sözügedən metoda
müqayisə funksiyası verib, müqayisədən əvvəl hər iki arqumenti kiçik hərf
registrinə (toLowerCase() metodunun köməyi ilə) dəyişdirmək lazımdır. Bundan
əlavə bir çox çeşidləmə funksiyaları �ikirləşmək olar, məsələn: mən�i ədədlər, tək
ədədlərin cüt ədəddən əvvəl gəlməsi və s. kimi sıralanmaya uyğun çeşidləmə
yerinə yetirmək olar. Massivin müqayisə edilən elementləri sadə elemenlər deyil
(ədəd və sətir kimi), obyektlərdən təşkil olunarsa, bu metod vasitəsilə maraqlı
imkanlar reallaşdırmaq mümkündür

7.7.4. concat() metodu

Array.concat() metodu massivin əvvəlki elementlərini özündə ehtiva etməklə,
metodda göstərilmiş arqumentlərə uyğun yeni massiv yaradır. Əgər bu
arqumentlərdən hər hansı biri özü massivdirsə, yekunlaşdırıcı massivə onun

elementlərini əlavə edilir. Ancaq nəzərə alın ki, massivlərdən massivlərin
rekursiv bölünməsi mümkün deyil. Aşağıda bir neçə nümunə nümayiş etdirilir:

var a = [1,2,3];
a.concat(4, 5) // [1,2,3,4,5] qaytarır
a.concat([4,5]); // [1,2,3,4,5] qaytarır
a.concat([4,5],[6,7]) // [1,2,3,4,5,6,7] qaytarır
a.concat(4, [5,[6,7]]) // [1,2,3,4,5,[6,7]] qaytarır

7.7.5. slice() metodu

Array.slice() Metodu tətbiq edildiyi massivin göstərilən arqumentlərə uyğun
fraqmentini və ya altmassivini qaytarır. Metodun iki arqumenti qaytarılan
fraqmentin başlanğıc və son nöqtələrini təyin edir. Qaytarılan massiv, göstərilmiş
birinci arqumentdən sonuncu arqumentə qədər (sonuncu arqumentin elementi
daxil olmamaqla) element dəstindən ibarət olur. Əgər yalnız bir arqument
göstərilmişdirsə, bu arqumentdən başlayaraq massivin sonuna kimi bütün
elementləri ehtiva edən massiv yaradılır. Əgər arqumentlərdən hər hansı biri
mən�idirsə, onda hesablanma massivin s massivin sonundan başlayır. Belə,
arqumentə misal olaraq, – 1, massivin son elementini, – 3 isə axırdan üçüncü
elementini verir. Aşağıda metodun tətbiq edildiyi bir neçə nümunə
göstərilmişdir:

var a = [1,2,3,4,5];
a.slice(0,3); // [1,2,3] qaytarır
a.slice(3); // [4,5] qaytarır
a.slice(1,-1); // [2,3,4] qaytarır
a.slice(-3,-2); // [3] qaytarır

7.7.6. splice() metodu

Array.splice() Metodu – massivin elementlərinin yerləşdirməsi və ya silinməsi
üçün universal metoddur. Bu metod əməliyyatı massivi üzərində edir, slice() və
concat() metodlarından fərqli olaraq yeni massiv yaratmır. Nəzərə alın ki,
splice() və slice() çox oxşar adlara malik olsa da, müxtəlif əməliyyatları yerinə
yetirirlər.
splice() metodu massivdən elementləri silə, massivə yeni elementlər daxil edə
bilər və ya eyni zamanda hər iki əməliyyatı yerinə yetirə bilər. Massivin
elementləri zəruri olduqda yerini dəyişir ki, yerləşdirmədən və ya silinmədən
sonra kəsintisiz ardıcıllıq yaransın. splice() metodunun birinci arqumenti
yerləşdirmənin və / və ya silinmənin başlandığı massiv mövqesini təyin edir.

I�kinci arqument isə massivdən silinəcək elementlərin miqdarını təyin edir. Əgər
ikinci arqument göstərilmişsə, göstərilən mövqedən massivin sonuna kimi
ilkdən massivin bütün elementləri silinir. splice() metodu silinmiş elementlərin
massivini və ya boş massiv (əgər heç bir elementlərdən silinməmişdirsə)
qaytarır. Məsələn:

var meyveler = ['alma', 'armud', 'heyva', 'çiyələk'];

// massivə heç bir element silməmək şərtilə (0) 2-ci indeksə yeni “gilas”
// elementinin əlavə olunması. Bu zaman mövcud 2-ci indeksdəki elementdən
// (indiki halda bu “heyva” elementindən başlayaraq) bütün massiv
// elementlərinin indeksi bir vahid artır
var removed = meyveler.splice(2, 0, 'gilas');
// indi meyveler massivi ['alma', 'armud', ‘gilas’, 'heyva', 'çiyələk']
// elementlərini ehtiva edir və massivdən heç bir element silinmir

// meyveler massivinin 3-cü indeksindən başlayaraq 1 elementin silinməsi
removed = myFish.splice(3, 1);
// indi meyveler massivi ['alma', 'armud', ‘gilas’, 'çiyələk']
// elementlərini ehtiva edir. Silinən massiv elementi: “heyva”

// meyveler massivinin 2-ci indeksindən başlayaraq 1 elementin silinməsi
// və buraya yeni “alça” elementinin əlavə olunması
removed = meyveler.splice(2, 1, 'alça');
// indi meyveler massivi ['alma', 'armud', ‘alça’, 'çiyələk']
// elementlərini ehtiva edir. Silinən massiv elementi: “gilas”

// meyveler massivinin 0-cı indeksindən başlayaraq 2 elementin silinməsi
// və buraya yeni “ərik”, “şaftalı”, “üzüm” elementlərinin əlavə olunması
removed = meyveler.splice(0, 2, 'ərik', 'şaftalı', 'üzüm');
// indi meyveler massivi ['ərik', 'şaftalı', 'üzüm', ‘gilas’, 'çiyələk']
// elementlərini ehtiva edir. Silinən massiv elementlərləri: “alma”, “armud”

// meyveler massivinin 2-ci indeksindən başlayaraq 2 elementin silinməsi
removed = meyveler.splice(meyveler.length -3, 2);
// indi meyveler massivi ['ərik', 'şaftalı', 'üzüm', ‘gilas’, 'çiyələk']
// elementlərini ehtiva edir. Silinən massiv elementlərləri: “üzüm”, “gilas”

Nəzərə alın ki, concat()-dan fərqli olaraq, splice() metodu ötürülən massiv-
arqumentinin ayrı-ayrı elementlərini ayrılıqda silmir. Yəni əgər yerləşdirmə üçün
metoda massiv ötürülürsə, metod özünü massiv elementləri kimi deyil, massiv
kimi göstərir.

7.7.7. push() və pop() metodları

push() və pop() metodları massivlərlərin steklər kimi işləməsinə şərait yaradır.
 push() metodu massivin sonuna bir və ya bir neçə yeni element əlavə edir və

onun yeni uzunluğunu qaytarır. Pop() metodu isə əksinə olaraq, massivin son
elementi uzaqlaşdırır, massivin uzunluğunu azaldır və massivi silinmiş qiyməti
qaytarır. Nəzərə alın ki, sözügedən hər iki metod əməliyyatı cari massivin
üzərində edirlər və əlavə massiv surəti yaratmırlar.

var stack = []; // stek: []
stack.push(1,2); // stek: [1,2] 2 qaytarır
stack.pop(); // stek: [1] 2 qaytarır
stack.push(3); // stek:[1,3] 2 qaytarır
stack.pop(); // stek: [1] 3 qaytarır
stack.push([4,5]); // stek: [1,[4,5]] 2 qaytarır
stack.pop() // stek: [1] [4,5] qaytarır
stack.pop(); // stek: [] 1 qaytarır

7.7.8. unshi�() və shi�() metodları

unshift() və shift() metodları bir çox məqamda push() və pop() metodlarına
oxşayır, lakin bu metodlar massivin başlanğıcına müva�iq olaraq element əlavə
edir və silirlər.
unshift() metodu massiv başlanğıcına element əlavə edir və mövcud
elementlərin yerini artan indeksə uyğun dəyişdirərək, massivin yeni uzunluğunu
qaytarır.
Shif() metodu massivin başlanğıcındakı elementi silir və qalan elementləri azad
olan (silinmiş) yerdə yerləşdirir.

var a = []; // a:[]
a.unshift(1); // a:[1] Qaytarır: 1
a.unshift(22); // a:[22,1] Qaytarır: 2
a.shift(); // a:[1] Qaytarır: 22
a.unshift(3,[4,5]); // a:[3,[4,5],1] Qaytarır: 3
a.shift(); // a:[[4,5],1] Qaytarır: 3
a.shift(); // a:[1] Qaytarır: [4,5]
a.shift(); // a:[] Qaytarır: 1

unshift() metoduna bir neçə arqument ötürərərkən bir neçə məqama diqqət
yetirməlisiniz: Arqumentlər bir-bir ötürülmür (splice() metodunda olduğu kimi).
Bu isə o deməkdir ki, yekun massivdə onlar arqument siyahısına müva�iq olaraq
sıralanacaq. Bir-bir əlavə edilərsə onlar əks istiqamətdə sıralanacaq.

8
Funksiyalar

Funksiya – bir dəfə təyin edilən və istənilən qədər çağrıla bilən proqram
kodunun blokudur. Funksiyalar parametrlərə və ya arqumentlərə malik ola bilər.
Bunlar lokal dəyişən və qiymətləri funksiya çağırışı zamanı təyin edilir.
Funksiyalar qaytarılan qiymətin hesablanması üçün tez-tez öz arqumentlərindən
istifadə edir. Qaytarılan qiymət funksiya çağırış ifadəsinin qiymətidir. Əgər
funksiya obyekt kontekstində çağırılırsa, onda o metod adlanır və obyektin özü
ona naməlum arqument şəklində ötürülür. Çox güman ki, siz artıq funksiya
konsepsiyası ilə tanışsınız, əgər belə anlayışlarla rast gəlinird, alt proqram və
prosedur kimi.

Bu fəsildə biz şəxsi JavaScript-funksiyalarının təyini və çağırışına
istiqamətlənəcəyik. Xatırladaq ki, JavaScript-də eval(), parseInt() kimi bir
neçə inteqrasiya edilmiş funksiya var. JavaScript-in kliyent dilində də
document.write() və alert() kimi başqa funksiyalar mövcuddur. I�nteqrasiya
edilmiş JavaScript-funksiyaları da eynilə istifadəçi tərə�indən müəyyən edilən
funksiyalar kimi tətbiq edilir.

JavaScript-də funksiyalar və obyektlər bir-birilə sıx bağlıdır. Bu səbəbdən biz
funksiyaların bəzi imkanlarının müzakirəsini 9-cu fəsilə qədər təxirə salacağıq.

8.1. Funksiyaların təyini və çağrılması

6-cı fəsildə qeyd edildiyi kimi, funksiyanı function təlimatından istifadə edərək
təyin. Təlimat function açar sözündən ibarətdir və aşağıdakı tərkibdə olur:

•	funksiyanın adı;
•	yumru mötərizələrlə bağlanmış və bir-birilə vergüllərlə ayrılmış parametr

adlarının vacib olmayan siyahısı;
•	�iqurlu mötərizələrə əhatələnmiş funksiyanın gövdəsini təşkil edən

JavaScript-təlimat(lar)ı
Nümunə 8.1-də təyin edilmiş bir neçə funksiya nümunəsi göstərilmişdir. Hərçənd
ki, bu funksiyalar qısa və sadədir, lakin bu funksiyalar burada bütün sadalanan

bütün nüansları ehtiva edir. Nəzərə alım ki, funksiyalara müxtəlif miqdarda
arqument müəyyən edilə bilər, funksiyalar həmçinin özündə saxlaya və ya
 return təlimatını özündə saxlamaya bilər. Return təlimatı 6-cı fəsildə təsvir
edilmişdir; bu təlimat funksiyanın icrasını dayandırır və təlimatda göstərilmiş
ifadənin (əgər varsa) qiymətini funksiyanı çağıran tərəfə qaytarır; ifadə
yoxluğunda bu təlimat undefined qiymətini qaytarır. Əgər funksiya return
təlimatını ehtiva etmirsə, onda bu funksiya sadəcə öz gövdəsində olan bütün
təlimatları yerinə yetirir və qeyri-müəyyən qiymət (undefined) qaytarır.

Nümunə	8.1.	JavaScript-funksiyaların	təyini

// Funksiya-üzlüyü, bəzən bundan document.write()-ın yerinə istifadə edilir.
// Bu funksiyada return təlimatı yoxdur, buna görə də, funksiya qiymət
// qaytarmır.
function print(msg)
{

document.write(msg, "
");
}

// İki nöqtə arasındakı məsafəni hesablayan və hesablanmış nəticəni qaytaran
// funksiya.
function distance(x1, y1, x2, y2)
{

var dx = x2 - x1;
var dy = y2 - y1;
return Math.sqrt(dx*dx + dy*dy);

}

// Faktorialın hesablanması üçün istifadə edilən
// rekursiv funksiya (özünə istinad edən).
// Xatırladaq ki, burada x faktorial, yəni x! – x və x-dən kiçik bütün müsbət
// tam ədədlərin hasilidir.
function factorial(x)
{

if (x <= 1)
return 1;
return x * factorial(x 1);

}

Müəyyən edilmiş funksiya, 5-ci fəsildə təsvir edilmiş () operatorunun köməyi ilə
çağırıla bilər. xatırlayırsınızsa, mötərizələrdən əvvəl funksiya adı, sonra isə bir-
birindən vergüllə ayrılan vacib olmayan arqument siyahısı göstərilir (faktiki
olaraq yumru mötərizələrdən əvvəl istənilən JavaScript ifadəsi göstərilə bilər,
hansı ki, qiyməti (mənanı) funksiyanı qaytarır). Nümunə	 8.1-də müəyyən
edilmiş funksiyalar aşağıdakı qaydada çağırıla ola bilər:

print(" Salam, " + name);
print("Mənim ana səhifəmə xoş gəlmisiniz!");
total_dist = distance (0,0,2,1) + distance (2,1,3,5);
print("Bu ehtimal bərabərdir: " + factorial (5) / factorial (13));

Funksiya çağırışı zamanı mötərizələrin daxilində göstərilmiş bütün ifadələr
hesablanır və alınmış qiymətlər funksiyanın arqumentləri kimi istifadə olunur.
Bu qiymətlər, uyğun olaraq adları funksiyanın gövdəsində təyin edilən
parametrlərə mənimsədilir və funksiya, göstərilən adlar üzrə parametrlərə
istinad edərək onlarla işləyir. Nəzərə alın ki, bu dəyişən-parametrlər yalnız
funksiya yerinə yetirilən zamanı müəyyən edilir; funksiyanın işi bitdikdən sonra
bu dəyişənlər saxlanılmır (bu əhəmiyyətli istisna, bölmə 8.8-də ətra�lı təsvir
edilir).

JavaScript – qismən tipləşdirilmiş dildir, buna görə də funksiya parametrlərinin
tipini göstərmək tələb olunmur və JavaScript məlumat tipinin funksiya
tələblərinə uyğunluğunu yoxlamır. Əgər arqumentin tipi sizin üçün
əhəmiyyətlidirsə, siz verilən arqumenti typeof operatorunun köməyilə
müstəqil yoxlaya bilərsiniz. Bundan başqa, JavaScript, funksiyaya parametrlərin
lazım olan miqdarda verildiyini yoxlamır. Əgər arqument miqdarı tələb
olunandan çoxdursa, onda, artıq olan qiymətlərə baxılmır. Əgər arqument
miqdarı tələb olunandan azdırsa, onda göstərilməyən arqumentlərə undefined
qiyməti mənimsədilir. Funksiyalar, elə yazıla bilər ki, arqument çatışmazlığına
önəm verməsin. Yaxud, elə yazıla bilər ki, arqumentlərin təyin olan miqdarda
olmasını tələb etsin. Biz fəsilin davamında arqumentlərin miqdarı yoxlamaq və
arqumentləri girişi onların adları ilə, sıra nömrələri ilə təşkil etmək üsulu ilə
tanış olacağıq.

Nəzərə alın ki, nümunə 8.1-dəki print() funksiyasında (return təlimatı yoxdur,
buna görə də bu funksiya həmişə undefined qiymətini qaytarır və sözügedən
funksiyanı mürəkkəb ifadənin bir hissəsi kimi istifadə etməyin mənası yoxdur.
Amma distance() və factorial() funksiyaları əvvəlki nümunələrdən göstərildiyi
kimi mürəkkəb ifadələrdə istifadə edilə bilər.

8.1.1. Daxili funksiyalar

JavaScript-də funksiyalar başqa funksiyaların daxilində təyin edilə bilər. Məsələn:

function hypotenuse(a, b)
{

function square (x)
{

return x*x;

}
return Math.sqrt(square (a) + square (b));

}

Daxili funksiyalar yalnız yuxarı səviyyəli funksiyaların kodunda təyin edilə bilər.
Bu isə o deməkdir ki, dövrlərin	və	ya	şərt	ifadələrinin	daxilində	funksiya	təyin	etmək
olmaz.20 Nəzərə alın ki, bu məhdudiyyətlər yalnız function təlimatının köməyilə
yaradılan funksiyalara aiddir. Funksional literallar (növbəti bölmədə təsvir
ediləcək) istənilən ifadənin daxilində ola bilər.

8.1.2. Funksional literallar

JavaScript funksiyaları funksional literallar şəklində müəyyən etməyə imkan
verir. 3-cü fəsildə deyildiyi kimi, funksional literal – adlandırılmayan funksiyanı
müəyyən edən ifadədir. Funksional literalının sintaksisi bir çox məqamda
function təlimatının sintaksisinə bənzəsə də, bu təlimat deyil, literaldır və
funksional literalda funksiya adı tələb edilmir

Aşağıdakı iki kod sətirində function təlimatının və funksional literalın köməyilə
az-çox bir-birinə bənzəyən funksiyalar müyyən edilmişdir:

function f(x){ return x*x;} // function təlimatı
function var f = function(x){ return x*x; }; // Funksional literal

Funksional literallar adlandırılmayan funksiyaları yaradır, amma sintaksis
funksiya adının göstərilməsinə də şərait yaradır. Bu özünə istinad edən rekursiv
funksiyalarının yazılışı zamanı lazım ola bilər. Məsələn:

var f = function fact(x){ if (x <= 1) return 1; else return x*fact (x1); };

kodun bu sətiri adlandırılmayan funksiyanı müəyyən edir və onu f dəyişənində
saxlayır. Funksional literal əslində fact adlı funksiyanı yaratmır, sadəcə bu adın
köməyilə funksiyanın gövdəsində öz-özünə istinad etməsinə şərait yaradır. Qeyd
edək ki, JavaScript 1.5 versiyasına qədər olan versiyalarda adlandırılmış
funksional literallar tam düzgün işləmir.
Funksional literallar təlimatlarla deyil, JavaScript-ifadələri ilə yaradılır və buna
görə də bu literallardan daha ustalıqla istifadə oluna bilərlər. Bu literallar xüsusilə
yalnız bir dəfə çağrılan və adlandırmaya ehtiyac olmayan funksiyalarda istifadə
edilir. Məsələn, funksional literal ifadəsinin köməyilə müəyyən edilmiş funksiya,
dəyişəndə saxlanmış, başqa funksiyaya ötürülmüş və ya hətta bilavasitə
çağırılmış ola bilər:

f[0] = function (x){ return x*x;}; // Funksiyanın müəyyən edilməsi və

 // dəyişəndə saxlanılması
a.sort(function (a, b){ return a b;}); // Funksiyanı müəyyən edilməsi və

 // digər funksiyaya ötürülməsi
var tensquared = (function (x){ return x*x;}) (10); // Funksiyanın
müəyyən

 // edilməsi və
 // çağrılması

8.1.3. Funksiyaların adlandırılması
Funksiyanın adlandırılması zamanı istənilən mümkün JavaScript
identi�ikatorundan istifadə oluna bilər. Funksiyalara kifayət qədər başa düşülən
və qısa ad seçmək lazımdır. Qısalıq və informativlik arasında balansın
saxlanılması qabiliyyəti təcrübə nəticəsində yaranır. Düzgün seçilmiş funksiya
adları kodun asan oxunmasını və başa düşülən olmasını əhəmiyyətli dərəcədə
yüksəldə bilər (deməli, və müşayiətin sadəliyini).
Əksər hallarda funksiya adları kimi feillər və ya feillərdən düzələn birləşmələrdən
istifadə edilir. Hamı tərə�indən qəbul edilmiş razılaşmaya əsasən funksiya adları
kiçik hər�lə başlayır. Əgər ad bir neçə sözdən ibarətdirsə, razılaşmalardan birinə
uyğun olaraq, bu sözlər bir-birindən sətir xətti simvolu ilə ayrılır, məsələn:
like_this(), digər razılaşmaya əsasən, birinci sözdən başqa, yerdə qalan
bütün sözlər böyük hər�lərlə başlayır və sözlər bitişik yazılır, məsələn:
likeThis(). Güman edilən funksiyaların adları, hansılar ki, necə güman edilir,
yad gözlərdən daxili, gizli funksionallığı reallaşdırırlar, bəzən altından xətt
çəkmənin (qeyd etmənin) simvolundan başlanırlar.
Bəzi proqramlaşdırmanın stillərində və ya aydın müəyyən edilmiş proqram
platformalarında sıx istifadə edilən funksiyalara çox qısa adlar verilir. Nümunə
olaraq JavaScript-in kliyent dilinin Prototype platformasını
(http://prototype.conio.net) göstərmək olar ki, burada
document.getElementById() adını sadəcə $() adlı funksiya əvəzləyib və bu
çox rahatdır. (2-ci fəsildə deyildiyi kimi, JavaScript identi�ikatorlarında dollar və
sətir xətti simvollarından istifadə etmək olar.)

8.2. Funksiyaların arqumentləri

JavaScript-də funksiyalar təyin edilib-edilməməsindən asılı olmayaraq istənilən
qədər arqumentlə çağırıla bilər. Bir halda ki, funksiyalar qismən tipləşdirilmişdir,
giriş arqumentlərinin tiplərini göstərmək imkanı yoxdur, bununla əlaqədar
olaraq, istənilən tipdə olan qiymətləri istənilən funksiyaya ötürmək mümkün
hesab edilir. Bütün bu məsələlər növbəti yarımfəsillərdə müzakirə edilir.

http://prototype.conio.net/

8.2.1. Vacib olmayan arqumentlər

Funksiyada göstərilən arqumentlərin miqdarından daha az arqument təyin
edilərsə, çatışmayan arqumentlər undefined qiymətini alır. Bəzi hallarda bəzi
arqumentləri qeyri-icbari təyin etmək lazım olur ki, funksiya çağırışı zamanı bu
arqumentlər ixtisara salınsın. Belə hallarda arqumentə susmaya görə qiymətlər
mənimsətmək çox səmərəli üsuldur (və ya null qiymətiylə verilmişdir).
Məsələn:

// a massivinə o obyektinin sadalanan xüsusiyyətlər adları əlavə edilərək, a
// massivini qaytarmaq. Əgər a massivi göstərilməmişdirsə və ya null-a
// bərabərdirsə, yeni boş a massivi yaratmaq

function copyPropertyNamesToArray(o, /* vacib olmayan */ a)
{

if (! a) a = []; // Əgər massiv müəyyən edilməmişdirsə və ya null
 // qiymətilə alınmışdırsa onda, boş a massivi yaradırıq.

for (var property in o) a.push(property);
return a;

}

Beləliklə funksiya müəyyən edildikdən sonra, bu funksiyaya müxtəlif müraciət
imkanları meydana çıxır:

// o və p obyektlərinin xüsusiyyətlərinin adlarını əldə edilməsi

var a = copyPropertyNamesToArray(o); // o obyektində massiv şəklində

 // əldə etmək
copyPropertyNamesToArray(p, a) // massivə p obyektinin

 // xüsusiyyətlərinin əlavə etmək

Bu funksiyanın birinci sətirində if təlimatının yerinə [] operatorundan aşağıdakı
qaydada istifadə etmək olar:

a = a || [];

5-ci fəsildə qeyd edildiyi kimi, || operatoru birinci arqument true-ya
bərabərdisə və true məntiqi qiymətinə dəyişdirilə bilirsə, birinci arqumentin
qiymətini qaytarır. Əks təqdirdə ikinci arqumentin qiymətini qayıdır. I�ndiki halda
bu operator, əgər a dəyişəni müəyyən edilmişdirsə və null qiyməti hətta o
hadisəyə özündə saxlamır, əgər a – bu boş massivdir. Əks təqdirdə o yeni boş
massivi qaytaracaq.
Nəzərə alın ki funksiyaların elanı zamanı vacib olmayan arqumentləri arqument
siyahısının sonuna yerləşdirmək lazımdır ki, onları ixtisara salmaq rahat olsun.
Çünki sizin funksiyanıza müraciət edən bir başqa proqramçı, birinci arqumenti

(hansı ki, vacib olmayan) ixtisara salaraq, ikinci arqumenti verə bilməyəcək. Bu
halda o birinci arqumentin qiymətinə açıq-aydın undefined və ya null
qiymətini verməlidir.

8.2.2. Dəyişən uzunluqlu arqument siyahıları: Arguments
obyek�

Funksiyanın gövdəsində arguments identi�ikatoru hər zaman xüsusi mənaya
malikdir;
arguments – Arguments obyekti kimi tanınan obyektə istinad edən çağırış
obyektinin spesi�ik xüsusiyyətidir.
Arguments obyekti – funksiyalara verilmiş qiymətin adları üzrə, nömrəsi üzrə
çıxarışını reallaşdıran massivə oxşar obyektdir (bölmə 7.8 baxmaq). Arguments
obyekti həmçinin əlavə olaraq callee əlavə xüsusiyyətini müəyyən edir ki, bu
xüsusiyyət növbəti bölmədə təsvir edilmişdir.
JavaScript-də adlandırılmış funksiya, təsbit edilmiş arqument sayı ilə təyin
edilməsinə baxmayaraq, çağırış zamanı ona istənilən qədər arqument ötürülə
bilər. Arguments obyekti arqumentlərin (hətta adı olmayan arqumentlərə)
qiymətlərinə tam girişi təmin edir. Fərz edək, bir x arqumentini tələb edən f
funksiyası müəyyən edilmişdi. Əgər bu funksiyanı iki arqumentlə çağırsaq, onda
birinci arqument funksiyada x adında və ya arguments[0] parametri kimi
əlçatan olacaq. I�kinci arqument isə funksiyada yalnız arguments[1] kimi
əlçatan olacaq. Bundan başqa massivlərdə olduğu kimi, arguments-də də
elementlərin miqdarını göstərən length xüsusiyyəti mövcuddur. Yəni iki
arqumentlə çağırılan f funksiyasının gövdəsində arguments.length
xüsusiyyəti 2 qiyməti ehtiva edir.
Arguments obyekti müxtəlif istiqamətlərdə istifadə oluna bilər. Aşağıdakı
nümunədə, funksiya çağrılan arqumentlərin tələb olunan miqdarının necə
yoxlanıldığı göstərilmişdir. Axı, JavaScript bunu sizin üçün etməyəcək:

function f (x, y, z)
{
// Əvvəlcə, verilən arqument miqdarının düzgünlüyü yoxlanılır

if(arguments.length! = 3)
{

throw new Error("f funksiyası "+ arguments.length + "arqumentlə
çağrılmış, lakin funksiyanın icrası üçün 3 arqument
tələb olunur.");

}
// Funksiyanın kodu...

}

Arguments obyektində JavaScript-funksiyalarının əhəmiyyətli imkanları yer alır:
funksiyalar elə yazıla bilər ki istənilən arqument sayı ilə işləsin. Elə aşağıda
göstərilən nümunədə max() adlı funksiya istənilən miqdarda qəbul edərək, bu
arqument içərisində ən böyük arqumenti qaytarır (analoji əməliyyatı
Math.max() inteqrasiya edilmiş funksiyası da edə bilər):

function max(/*.. .*/)
{
var m = Number.NEGATIVE_INFINITY; // Bütün arqumentlərin üzrə dövr,

// axtarış və arqumentlərdən ən
// böyüyünün m dəyişənində saxlanılması

for (var i = 0; i < arguments.length; i++)
if (arguments[i] > m) m = arguments[i];

return m; //Ən böyük arqumenti qaytarırıq
}

var largest = max (1, 10, 100, 2, 3, 1000, 4, 5, 10000, 6);

Buna oxşar və bu kimi istənilən miqdarda arqument qəbul edən funksiyalara
dəyişən	 miqdarlı	 arqument	 funksiyaları	 (variadic	 functions,	 variable	 arity
functions	və ya	 varargs	 functions) deyilir. Bu termin C proqramlaşdırma dilinin
meydana çıxması ilə birlikdə yaranmışdır. Nəzərə alın ki, dəyişən miqdarlı
arqument funksiyalarını arqumentsiz çağırmaq olmaz. Funksiya yazılışı
arguments[] obyektindən istifadə edəcək icbari və vacib olmayan arqumentlərin
miqdarını təsbit etmək tamamilə düzgün və səmərəli addımdır.
Unutmayın ki, arguments faktiki olaraq massiv deyil – bu sadəcə Arguments
obyektidir. Arguments-in hər bir obyektində nömrələnmiş massiv elementləri
və length xüsusiyyəti olmasına baxmayaraq, texniki nöqteyi-nəzərdən massiv
deyil. Arguments-ə bir neçə nömrələnmiş xüsusiyyətlərə malik obyekt kimi
baxmaq daha yaxşıdır. ECMAScript spesi�ikasiyası hər hansı reallaşdırması
Arguments obyektini massiv kimi dəstəkləmir. Hərçənd, məsələn,
arguments.length xüsusiyyətinə qiymət mənimsətməyə icazə verir, amma
ECMAScript bunu obyektdə müəyyən edilmiş massiv elementlərinin sayının real
dəyişikliyi üçün dəstəkləmir. (əsl Array obyektləri üçün length xüsusiyyətinin
spesi�ik davranışı bölmə	7.6.3-də təsvir edilir.)
Arguments obyektində bir çox qeyri-adi xüsusiyyət vardır. Funksiyada
adlandırılmış arqumentlər olan zaman, Arguments obyektinin massiv
elementləri, funksiyanın arqumentlərini ehtiva edən lokal dəyişənlərin
sinonimidir. Arguments massivi [] və adlandırılmış arqumentlər – bir dəyişənə
müraciətin iki müxtəlif formasıdır. Arqumentin adı vasitəsilə arqumentin
qiymətinin dəyişikliyi arguments[] massivi vasitəsilə çıxardılan qiyməti

dəyişdirir. arguments[] massivi vasitəsilə arqumentin qiymətinin dəyişikliyi
arqument adında çıxardılan qiyməti dəyişdirir. Məsələn:

function f(x){
print(x); // Arqumentin ilk qiymətini ekranlaşdırılır
arguments[0] = null; // Massivin elementlərini dəyişdirərkən, biz

 // həmçinin x-də dəyişdiririk
print(x); // İndi isə "null" ekranlaşdırılır

}

Şübhəsiz ki, bu əsl massivə xas davranış deyil. Bu halda arguments[0] və x
eyni qiymətə istinad edə bilərdi, amma bir istinadın dəyişikliyi o birisinə təsir
göstərməməlidir.
Nəhayət, nəzərə almaq lazımdır ki, arguments yalnızca adi JavaScript-
identi�ikatorudur və bu ehtiyatda saxlanılan söz sayılmır. Əgər funksiyada eyni
adlı arqumenti və ya lokal dəyiəni müəyyən etsək, onda Arguments obyekti
əlçatmaz olacaq. Bu səbəbdən arguments sözünü ehtiyata saxlanmış söz hesab
etmək və bu adlı dəyişənlər yaratmaqdan çəkinmək lazımdır.

8.2.2.1. callee xüsusiyyə�
Arguments obyekti öz massiv elementlərindən başqa hal-hazırda icra edilən
funksiyaya istinad edən callee xüsusiyyətini ehtiva edir. Bu xüsusiyyətdən
adlandırılmayan funksiyaların rekursiv çağırışı üçün istifadə etmək olar. Aşağıda
fatorialı hesablayan adlandırılmayan funksional literalının nümunəsi
göstərilmişdir:

function (x){
if (x <= 1)
return 1;
return x * arguments.callee (x 1);

}

8.2.3. Obyekt xüsusiyyətlərindən arqumentlər kimi is�fadə

Funksiya üçdən çox arqument ifadə edən zaman, bu arqumentlərini düzgün
sırasını yadda saxlamaq çətin olur. Bu səbəbdən yaranan xətaların qarşısını
almaq üçün arqumentlər funksiyaya "ad - qiymət" cütlükləri şəklində ötürülə
bilər. Bu cür imkanı reallaşdırmaq üçün, funksiyanın təyini zamanı tək arqument
kimi obyektin ötürülməsini tətbiq etmək lazımdır. Bu stil sayəsində, istifadəçilər
funksiyanı obyekt literalı kimi tətbiq edə biləcək ki, bu formada lazımlı "ad-
qiymət" cütlükləri təyin ediləcək. Aşağıdakı fraqmentdə belə bir funksiyanın
nümunəsi göstərilmiş. Nümunədə həmçinin arqumentlər üçün susmaya görə
qiymətlər təyin etmək qaydası da göstərilir:

// Elementlərin length qiymətini from massivindən to massivinə kopyalanması.
// Kopyalanma from massivindəki from_start elementindən başlanır
// to massivindəki to_start elementin başlayaraq və elementlərə tətbiqi
// edilir. Bu cür funksiyanın arqument ardıcıllığını yadda saxlamaq kifayət
// qədər çətindir.

function arraycopy(/* array */ from, /* index */
from_start,

/* array */ to, /* index */ to_start,
/* integer */ length)

{
// burada funksiyanın realizasiyası baş verir

}
// Bu funksiya isə, yuxarıdakına nisbətən az effektiv olsa da,
// arqument ardıcıllığını yadda saxlamağı tələb etmir, from_start
// və to_start arqumentləri isə susmaya görə 0 qiymətini qəbul edir.

function easycopy(args)
{

arraycopy(args.from, args.from_start || 0, // Diqqətli olun, məhz
burada

 // susmaya görə qiymətlər
 // təyin olunur

args.to, args.to_start || 0,
args.length);

}

// Aşağıda isə easycopy() funksiyanın çağırış nümunəsi göstərilir:
var a = [1,2,3,4];
var b = new Array(4);
easycopy({from: a, to: b, length: 4});

8.2.4. Arqumentlərin �pləri

JavaScript qismən tipləşdirilmiş dil olduğuna görə, arqumentlər tiplərinin
göstərişi olmadan elan edilir və arqumentlərin funksiya qiymətlərinə ötürülməsi
zamanı onların hansı tipdə olduğu yoxlanılmır. Siz öz proqramınızda nümunə 8.3-
dəki arraycopy() funksiyasında edildiyi kimi funksiya arqumentləri üçün
təsvir adları seçərək, şərhdə müva�iq göstəriş daxil edə bilərsiniz. Vacib olmayan
arqumentlər üçün şərhə "vacib	 olmayan"	 ("optional") sözünü əlavə etmək olar.
Amma əgər metod arqumentlərin ixtiyari miqdarını qəbul etmək imkanı nəzərdə
tutursa, nöqtələrdən istifadə etmək olar:

function max(/* miqdar...*/){ /* funksiyanın gövdəsi */ }

3-cü fəsildə qeyd edildiyi, ehtiyac olduğu halda JavaScript tiplərin	dəyişikliyini
yerinə yetirir. Beləliklə, əgər siz sətir arqumentlərini qəbul etməyə yönəlmiş

funksiyanı yaratsanız, sonra da bu funksiyaya sətir olmayan hər hansı tipdə
arqument ötürsəniz, arqumentin qiyməti sətirə dəyişdiriləcək və funksiya bu
arqumentə sətir müraciət edəcək. I�stənilən elementar tip sətirə dəyişdirilə bilər.
Obyektlər üçün isə, toString() (real olaraq, həmişə faydalı olmayan) metodları
mövcuddar. buna görə da xəta riski aşağıdır.
Ancaq belə yanaşma həmişə yararlı olmaya bilər. Yenidən əvvəlki nümunədə
nümayiş etdirilmiş arraycopy() metoduna baxaq. Bu metod birinci
arqumentin massiv olmasını gözləyir. Əgər funksiyaya müraciət edərkən birinci
arqument massiv (və ya massivə oxşar obyekt) olmazsa, funksiyaya müraciət
uğursuzluqla nəticələnir. Əgər funksiya bir neçə dəfə çağırılacaqsa, onda bu
funksiyaya arqument tiplərinin uyğunluğunun yoxlanılmasını əlavə etmək
lazımdır. Xətalı arqument tiplərinin ötürülməsi zamanı istisna yaradılmalıdır, ki,
bu xəta barədə məlumat versin. Xətalı arqument tiplərinin ötürülməsi zamanı
funksiyanın icrasının müvəffəqiyyətsizliyə uğrayacağını nəzərə alaraq, funksiya
çağırışını dərhal kəsmək lazımdır. Məsələn, aşağıdakı fraqmentdə funksiya ədəd
arqumentinin köməyilə massiv elementinə giriş əldə etməyə çalışır:

// a, massivin (və ya massivə oxşar obyektin) elementlərinin cəmini
// qaytarır. massivin Bütün elementləri ədəd olmalıdır, bu halda null və
// undefined qiymətlərinə icazə verilmir.

function sum(a){
if ((a instanceof Array) || // əgər bu massivdirsə
(a && typeof a == "object" && "length" in a)) // və ya massivə oxşar

 // obyektirsə
{

var total = 0;
for (var i = 0; i < a.length; i++)
{

var element = a[i];
if (!element)
continue; // null və undefined qiymətlərinə icazə verməmək
if (typeof element == "number")
total += element;

else
throw new Error("sum(): Massivin bütün elementləri ədəd

olmalıdır");
}
return total;

}
else

throw new Error("sum(): Arqument massiv olmalıdır");
}

sum() metodu giriş arqumentlərinin tiplərinin yoxlamasına olduqca ciddi
nəzarət edir və tələblərə uyğun olmayan arqument daxil edildiyi halda, kifayət
qədər informativ bildirişlərə malik istisnalar meydana çıxır. Bununla belə metod

əsl massivlərlə yanaşı, massivə oxşar obyektlər ilə işləyə bildiyinə, və null,
undefined qiymətlərinə imkan vermədiyinə görə öz elastikliyini saxlayır.

JavaScript – olduqca elastik və qismən tipləşdirilmiş dil olduğuna görə, bu dildəki
funksiyalar istənilən miqdarda və tipdə arqument daxil edilməsinə dözümlüdür.
Bu yanaşma aşağıdakı �lexsum() metodunda öz əksini tapır. Məsələn, bu metod
istənilən miqdarda giriş arqumenti qəbul edir və massivləri özləri ilə rekursiv
olaraq emal edir. Bunun nəticəsində metod, massivi dəyişən miqdarlı arqument
və ya arqument şəklində qəbul edə bilər. Bundan başqa, metod istisna
yaramazdan ədəd olmayan arqumentləri maksimum səylə ədədə çevirməyə
çalışır:

function flexisum(a) {
var total = 0;
for(var i = 0; i < arguments.length; i++)
{

var element = arguments[i];
 if (!element)

 continue; // null və undefined qiymətlərinə icazə verməmək

// Arqumentin tipinə uyğun olaraq onu ədəd tipinə dəyişdirmək
 var n;
 switch(typeof element) {
 case "number":
 n = element; // Dəyişikliyə lüzum yoxdur
 break;
 case "object":
 if (element instanceof Array) // Massivin rekursiv dövrü

n = flexisum.apply(this, element);
 else

n = element.valueOf(); //Digər obyektlər üçün
 //valueOf metodunu çağırmaq
 break;
 case "function":

 n = element(); // Funksiyanı çağırmağa çalışmaq
 break;

 case "string":
 n = parseFloat(element); // Sətiri dəyişdirməyə çalışmaq
 break;

 case "boolean":
 n = NaN; // Məntiqi qiyməti ədədə dəyişdirmək olmur!

break;
}

// Əgər normal ədəd əldə edə bilsək, həmin ədədi cəmə əlavə edilir.
if (typeof n == "number" && !isNaN(n))

total += n;
// Əks təqdirdə istisna yaradılır
else

throw new Error("sum(): " + element + " qiymətinin ədədə
 dəyişdirilməsi xətası");

}
return total;

}

8.3. Məlumat qismində funksiyalar

Əvvəlki bölmədə göstərildiyi kimi, funksiyaların təyin edilməsi və çağrılması ən
əhəmiyyətli xüsusiyyətləridir. Funksiyaların təyini çağırışı – JavaScript və digər
proqramlaşdırma dillərinin əksəriyyətinin sintaktis vasitələridir. Ancaq
JavaScript-də funksiya – yalnız sintaktis konstruksiya sayılmır, o həm də
məlumat ehtiva edir və bu onu bildirir ki, onlar dəyişənlərə mənimsədilə, obyekt
xüsusiyyətlərində və ya massiv elementlərində saxlanıla, arqumentlər kimi digər
funksiyalara ötürülə və s. əməliyyatlar ediləbilər.
JavaScript-də funksiyaların sintaktis konstruksiyalar və məlumatlarla eyni
zamanda necə işlədiyini aşağıdakı funksiya təyinində göstərilir:

function square(x){ return x*x; }

Bu təyin funksiyanın yeni obyektini yaradır və ona square dəyişənini
mənimsəyir. Funksiyanın adı əslində qeyri-maddi sayılır və bu sadəcə
funksiyanın adını ehtiva edən dəyişəndir. Funksiya başqa dəyişənə də
mənimsədilə bilər:

var a = square(4); // a 16 qiymətini ehtiva edir
b= square; // b dəyişəni square funksiyasına istinad yaradır
var c = b(5); // c 25 qiymətini ehtiva edir

Funksiya qlobal dəyişənlərdən əlavə, həm də obyekt xüsusiyyətlərinə
mənimsədilə bilər. Bu halda funksiyanı metod adlandırırlar:

var o = new Object;
o.square = Function(x){ return x*x;}; // funsional literal
y = o.square(16); // y 256-a bərabərdir

Funksiyalar, həm də massivin elementlərinə mənimsədilə bilər:

var a = new Array(3);
a[0] = function (x){ return x*x;}
a[1] = 20;
a[2] = a[0](a[1]); // a[2] 400 qiymətini ehtiva edir

Sonuncu nümunədəki funksiya çağırışının sintaksisi sizə qeyri-adi görünə bilər,
lakin JavaScript-də bu növ çağırışlar () operatorunun köməyilə mümkündür!
Nümunə	8.2-də funksiyaların məlumatlar qismində necə çıxış etdiyi təfərrüatı ilə
göstərilmişdir. Nümunədə funksiyaların digər funksiyalara necə ötürüldüyü
göstərilir. Hərçənd ki, nümunə sizə bir qədər mürəkkəb görünə bilər, amma kodu
şərhlərlə tanış olaraq nəzərdən keçirsəniz prosesi tamamilə anlayacaqsınız.

Nümunə	8.2.	Funksiyalardan	məlumatlar	kimi	istifadə

function add(x, y){ return x + y;}
function subtract(x, y){ return x y;}
function multiply(x, y){ return x * y;}
function divide(x, y){ return x / y;}

// Bu funksiya yuxarıda göstərilən funksiyalardan birini qəbul edir
// və onu iki operandlara çağırırır

function operate (operator, operand1, operand2)
{
return operator(operand1, operand2);

}

// Beləlikdə biz (2+3)+(4*5) ifadəsinin qiymətinin hesablanması üçün bu
// funksiyanı aşağıdakı kimi çağıra bilərik:
var i = operate(add, operate (add, 2, 3), operate (multiply, 4, 5));

// Bu nümunədən istifadə edərək, biz bu funksiyanı obyekt literalının
// daxilində funksional literallar vasitəsilə yenidən realizə edirik.

var operators ={

add: function (x, y){ return x+y;},
subtract: function (x, y){ return x y;},
multiply: function (x, y){ return x*y;},
divide: function (x, y){ return x/y;},
pow: Math.pow // Burada hətta qabaqcadan müəyyən edilmiş funksiyalar

 // da iştirak edə bilər
};

// Bu funksiya operatorun adını qəbul edir, obyektdə həmin operatoru axtarır
// və sonra da tapılmış operatoru ona verilmiş operandlar üzərində tətbiq
// edir. Funksiyanın operatorunun çağırış sintaksisinə diqqət yetirin.

function operate2(op_name, operand1, operand2){

if (typeof operators [op_name] == "function")
return operators[op_name] (operand1, operand2);

else
throw "Naməlum operator";

}

// Buda belə, indi biz qiymətin hesablanması üçün bu funksiyanı çağıra

// bilərik.
// (" hello" + " " + "world"):
var j = operate2("add", "hello", operate2 (" add", " ", "world"))

// Qabaqcadan müəyyən edilmiş Math.pow() funksiyasından istifadə edirik:
var k = operate2("pow", 10, 2);

Əgər əvvəlki nümunədə funksiyaların arqumentlər qismində necə rahat
ötürüldüyünə və digər funksiyalarda bu üsuldan sıx istifadə edildiyinə şübhəniz
varsa, Array.sort() funksiyasına nəzər yetirin. Bu funksiya massivin
elementlərini çeşidləyir. Bir çox çeşidləmə növləri (ədəd, əli�ba, tarix, artan,
azalan və s. üzrə) mövcuddur, buna görə də sort() funksiyası vacib olmayan
arqument kimi digər funksiya qəbul edir ki, bu funksiyada hansı qaydada
çeşidləmə yerinə yetiriləcəyi göstərilir. Bu cür funksiyaların iş prinsipi çox
sadədir. Belə funksiyalar adətən massivin iki elementi qəbul edərək, onları
müqayisə edir və sonra da alınan nəticəyə uyğun olaraq elementlərdən hansının
birinci olacağı müəyyən edilərək, qaytarılır. Bu funksiya vasitəsilə qaytarılan
arqument sayəsində Array.sort() metodu çox universal və elastik hala gəlir ki, bu
imkandan istifadə edərək istənilən məlumat tipini düşünülə bilən istənilən
sırada çeşidləmək olar! (Array.sort() funksiyasından istifadə nümunəsi
bölmə	7.7.3-də mövcuddur.)

8.4. Metodlar qismində funksiyalar

Metodlar – digər funksiyalar fərqli olaraq, obyektin xüsusiyyətində saxlanılır və
bu obyekt vasitəsilə çağırılır. Unutmayın ki, funksiyalar – müəyyən edilmiş
adlarda saxlanılan məlumatların qiymətləridir və funksiyaların davranışında
qeyri-adi heç nə yoxdur. Buna görə də funksiyalar istənilən dəyişənə
mənimsədildiyi kimi, obyekt xüsusiyyətlərinə mənimsədilə bilər. Məsələn, əgər f
funksiyası və o obyekti varsa, m adlı metodu bu cür müəyyən etmək tamamilə
doğrudur:

o.m = f;

o obyektində m() metodunu müəyyən etdikdən sonra, bu metoda aşağıdakı
qaydada müraciət etmək olar:

o.m();

Və ya, əgər m() metodu iki arqument qəbul etmək istəyirsə:

o.m (x, x+2);

Metodlar bir çox əhəmiyyətli xüsusiyyətə malikdir: metodun çağrıldığı obyektin
qiymətini, metodun gövdəsində this açar sözünün köməyilə əldə etmək
mümkündür. Yəni, o.m() metodu çağırılan zaman, metodun gövdəsində this
açar sözünün köməyilə o obyektinə giriş əldə etmək olar. Aşağıdakı nümunədə
bunun şahidi ola bilərsiniz:

var calculator = { // Obyekt literalı
operand1: 1,
operand2: 1,
compute: function (){

this.result = this.operand1 + this.operand2;
}

};
calculator.compute(); // 1+1 neçə edir?
print(calculator.result); // Nəticə

this açar sözü çox əhəmiyyətli rolu oynayır. Metod kimi çağırılan istənilən
funksiya çağrıldığı obyekti naməlum arqument kimi öz sərəncamına alır. Bir
qayda olaraq, metodlar bəzi əməliyyatları bu obyektin üzərində yerinə yetirir,
beləliklə, metodların çağırış sintaksisi onu deməyə əsaslanır ki, funksiya obyektlə
əməliyyat edir. Aşağıdakı proqramın ikisətirini müqayisə edin:

rect.setSize(width, height);
setRectSize(rect, width, height);

Bu iki sətirdə çağırılan hipotetik funksiyalar tamamilə eyni əməliyyatları rect
obyekti (hipotetik) üzərində edir, amma birinci sətirdəki metodun çağırış
sintaksisi rect obyektinin diqqət mərkəzində olduğunu daha əyani göstərir.
(Əgər birinci sətir sizə daha qeyri-adi gəldisə, deməli hələki sizdə obyekt
yönümlü proqramlaşdırma təcrübəsi yoxdur)
Funksiya metod kimi deyil, funksiya kimi çağırılarkən, this açar sözü qlobal
obyektə istinad edir. Ən qəribəsi odur ki, bu yanaşma hətta mənbəyi metod olan
və metodların daxildə qurulan funksiyalara (əgər onlar funksiya kimi
çağırılırlarsa) da şamil edilir. this açar sözü funksiyada təkmil bir qiymətə
malikdir və qoyulduğu funksiyanın gövdəsində qlobal obyektə istinad edir
(görünüş cəhətdən hiss olunmasa da). Yadınızda saxlayın ki, this – dəyişən və ya
xüsusiyyət adı deyil məhz açar sözü sayılır. JavaScript sintaksisi this element
qiymət mənimsədilməsinə icazə vermir.

8.5. Konstruktor-funksiyası

Konstruktor – obyekt xüsusiyyətlərinin inisializasiyasını yerinə yetirən və new
təlimatı ilə birgə istifadə edilməsi nəzərdə tutulan funksiyadır. Konstruktorların
ətra�lı təsviri 9-cu fəsildə yer alıb. Ancaq qısa olaraq onu demək olar ki, new
təlimatı yeni Function obyekti yaradır, sonra da funksiya-konstuktoruna
yenidən yaradılmış obyekti this açar sözünün qiyməti kimi verərək
çağrılmasına səbəb olur.

8.6. Funksiyaların xüsusiyyətləri və metodları

Biz artıq, JavaScript-də, funksiyaların qiymətlər qismində necə istifadə
olunduğunun şahidi olduq. typeof təlimatı funksiyalar üçün "Function" sətirini
qaytarmasına baxmayaraq, JavaScript-dəki funksiyalar əslində xüsusi növ
obyektdir. Və belə olduqda, funksiyalar digər obyektlər kimi xüsusiyyətlərə və
metodlara malik olur.

8.6.1. length xüsusiyyə�

Əvvəlki bölmələrdə qeyd edildiyi kimi, funksiyanın gövdəsində arguments
massivinin length xüsusiyyəti bu funksiyaya verilmiş arqumentlərin miqdarını
müəyyən edir. Ancaq funksiyanın özünün length xüsusiyyəti başqa mənaya
malikdir. Funksiyanın length xüsusiyyəti funksiyaya verilməli olan və yalnız
oxuma üçün əlçatan olan arqumentlərin (funksiya müəyyən edilərkən siyahıda
təyin edilən parametrlər) miqdarını qaytarır. Xatırladaq ki, funksiya istənilən
miqdarda arqumentlə çağırıla bilər və bu arqumentləri miqdarından asılı
olmayaraq arguments massivi vasitəsilə çıxardıla bilər. Function obyektinin
length xüsusiyyəti də bu cür işləyir, yəni funksiyada miqdarından asılı olmayaraq
mövcud olan parametrlər çıxardıla bilər. Nəzərə alın ki, arguments.length
xüsusiyyətindən fərqli olaraq, funksiyanın length xüsusiyyəti həm funksiya
daxilində, həm də funksiyadan kənar əlçatandır.
Aşağıdakı fraqmentdə başqa funksiyadan arqumentlər massivini əldə edən
check() adlı funksiya təyin edilir. Bu funksiya Function.length
(arguments.callee.length kimi də əlçatan) xüsusiyyətiylə arguments.length
xüsusiyyətini müqayisə edir və funksiyaya gözlənilən miqdarda arqumentin
verilib-verilmədiyini yoxlayır. Əgər arqument sayı gözlənilən miqdarda deyilsə,
istisna yaradılır. check() funksiyasını bu funksiyanın çağırışının sırasını göstərən
f() test funksiyası müşaiyət edir:

function check(args) {

var actual = args.length; // Faktiki ötürülən arqument miqdarı

var expected = args.callee.length; // Gözlənilən ötürülən arqument miqdarı

if (actual != expected) { // Əgər gözlənilən arqument miqdarı

// olmasa, istisna yaradırıq

throw new Error("düzgün olmayan arqument miqdarı: gözlənilir: " +

expected + "; faktiki ötürülüb " + actual);

}

}

function f(x, y, z) {

// Faktiki ötürülən arqument miqdarının gözlənilən arqument miqdarına

// uyğunluğunu yoxlayırıq

// Əgər uyğun deyilsə, istisna yaradılır

check(arguments);

// İndi isə, funksiyanın qalan hissəsini adi qaydada yerinə yetiririk

return x + y + z;

}

8.6.2. prototype xüsusiyyə�

I�stənilən funksiya qabaqcadan müəyyən edilmiş obyekt-prototipinə istinad edən
prototype xüsusiyyətinə malikdir. Prosesə daxil olan bu obyekt, funksiya new
operatoru vasitəsilə konstruktor kimi istifadə olunan zaman, obyektlərin yeni
tiplərinin təyini prosesində mühüm rol oynayır. Biz 9-cu fəsildə prototype
xüsusiyyətini təfərrüatı ilə öyrənəcəyik.

8.6.3. Funksiyaların şəxsi xüsusiyyətlərinin təyini

Funksiya çağırışları arasında dəyişənin qiymətinin saxlanılması tələb olunduqda,
ad fəzasında qlobal dəyişənlərin təyininə icazə verməyən Function obyektinin
xüsusiyyətlərindən daha çox istifadə edilir. Fərz edək ki, hər bir çağırışda unikal
identi�ikator qaytaran funksiya yazmaq lazımdır və funksiya heç vaxt eyni
qiyməti iki dəfə qaytarmamalıdır. Bunun üçün, funksiya son qaytarılmış qiyməti
yadda saxlayır və bu informasiya onun çağırışları arasında qüvvədə qalır.
Hərçənd ki, göstərilən informasiya qlobal dəyişəndə də saxlanıla bilər, amma
buna heç bir lüzum yoxdur və bu informasiyanın Function obyektinin
xüsusiyyətində saxlanılması daha yaxşıdır, çünki saxlanılan informasiya yalnız
funksiyanın özündə istifadə olunur. Aşağıda hər bir çağırışında unikal tam ədəd
funksiya nümunəsi göstərilmişdir:

// "Statik" dəyişəni yaradırıq və inisializasiya edirik.
// Funksiyaların elanı kodun icrasına qədər emal edilir,
// buna görə də biz funksiyanın elanına qədər bu mənimsəməni yerinə yetirə
// bilərik

uniqueInteger.counter = 0;

// Funksiyanın özü. Bu funksiya hər kəs çağırışında müxtəlif qiymətlər
// qaytarır və son qaytarılmış qiymətin müəyyən edilməsi üçün şəxsi "statik"
// xüsusiyyətindən istifadə edir.

function uniqueInteger(){

return uniqueInteger.counter++; // "statik" dəyişəninin qiymətini
 // artırırıq və alınan qiyməti qaytarırıq

}

8.6.4. apply və call() metodları

ECMAScript-də bütün funksiyalar üçün müəyyən edilmiş iki metod mövcuddur.
Bu metodlar call() və apply() metodlarıdır və funksiyanın hər hansı obyekt
metodu kimi çağrılmasına şərait yaradır. call() və apply() metodlarının
birinci arqumenti – funksiyanın yerinə yetirildiyi obyektdir və bu obyekt
funksiyanın daxilində this açar sözünün qiyməti olur. call() metodun qalan
arqumentləri – çağırılan funksiyaya ötürülən qiymətlərdir. Belə ki, f()
funksiyasına iki rəqəmini ötürmək və bu funksiyanı obyekt metodu kimi onu
çağırmaq üçün, aşağıdakı formadan istifadə etmək olar:

f.call(o, 1, 2);

Bu üsul aşağıdakı sətirlərinə analojidir:

o.m = f;
o.m (1,2);
delete o.m;

apply() metodu call() metoduna bənzəyir, lakin metod vasitəsilə
arqumentlər funksiyaya massiv şəklində ötürülür:

f.apply(o, [1,2]);

Məsələn, ədəd massivindəki ən böyük ədəd tapmaq üçün, massivin elementlərini
Math.max() funksiyasına apply() metodunun köməyilə ötürmək olar:

var biggest = Math.max.apply(null, array_of_numbers);

8.7. Funksiyaların prak�k nümunələri

Bu bölmədə obyektlərlə və massivlərlə işləyə bilən, praktiki dəyərə malik bir neçə
funksiya nümunəsi göstərilmişdir. Nümunə	 8.3-də Obyektlərlə işləyə bilən
funksiyaları göstərilmişdir.

Nümunə	8.3.	Obyektlərlə	işləyə	bilən	funksiyalar

// "o" obyektinin sadalana bilən ad xüsusiyyətini ehtiva edən massivin
// qaytarılması

function getPropertyNames(/* obyekt */ o)
{

var r = [];
for(name in o)

r.push(name);
return r;

}

// "from" obyektinin sadalana bilən xüsusiyyətlərinin "to" obyektinə
// köçürülməsi.
// Əgər "to" arqumenti null qiymətinə bərabərdirsə, onda yeni obyekt
// yaradılır.
// Funksiya "to" obyektini və ya yeni yaradılmış obyekti qaytarır.

function copyProperties(/* obyekt */ from, /* vacib olmayan obyekt */ to)
{

if (!to)
to ={};
for (p in from)

to[p] = from[p];
return to;

}

// "from" obyektinin sadalana bilən xüsusiyyətlərinin "to" obyektinə
// köçürülməsi. Ancaq burada yalnız "to" obyektində müəyyən edilməmiş
// xüsusiyyətlər köçürdülür. Bu bizə o vaxt lazım ola bilərki, məsələn:
// "from" obyekti "to" obyektinə köçürdüləcək xüsusiyyətlər arasında susmaya
// görə qiymətlər ehtiva edə bilər və bu qiymətlər "to" obyektində artıq
// müəyyən edilmiş ola bilər. Eyni qiymətləri təkrar köçürdülməməsi üçün bu
// funksiyadan istifadə etmək lazımdır.
function copyUndefinedProperties(/* obyekt */ from, /* obyekt */ to)
{

for (p in from)
{

if (!p in to)
to[p] = from[p];

}
}

Növbəti nümunədə massivlərlə işləyə bilən funksiyalar göstərilmişdir.

Nümunə	8.4.	Massivlərlə	iş	üçün	funksiyalar

// a massivinin hər bir elementinin yoxlama funksiyasına ötürülməsi.
// Yalnız yoxlama nəticəsi true olan elementləri ehtiva edən massivi
// qaytarılması

function filterArray (/* massiv */ a, /* yoxlama funksiyası */ predicate)
{

var results = [];
var length = a.length; // əgər yoxlama funksiyası length

 // xüsusiyyətini dəyişdirərsə!
for (var i = 0; i < length; i++)
{

var element = a[i];
if (predicate(element))

results.push(element);
}
return results;

}

// Hər bir elementi "f" funksiyasına ötürülən qiymətlər massivinin
// qaytarılması

function mapArray (/* massiv */ a, /* funksiya */ f)
{

var r = []; // nəticələr
var length = a.length; // əgər f funksiyası length xüsusiyyətini

 // dəyişdirərsə!
for (var i = 0; i < length; i++)

r[i] = f(a[i]);
return r;

}

Və son olaraq, nümunə	 8.5-də funksiyalar funksiyalarla iş üçün nəzərdə
tutulmuşdur. Faktiki olaraq burada daxili funksiyalar istifadə edilir və qaytarılır.
Daxili funksiya vaxtilə "qapanma" adını almış üsulla qayıdır. Qapanmalar, sizə
biraz mürəkkəb və buna görə də bu mövzuya növbəti bölmədə baxılır.

Nümunə	8.5.	Funksiyalarla	iş	üçün	funksiyalar

// Sərbəst funksiya qaytarır, hansı ki, bu funksiya da öz növbəsində "f"
// funksiyasını "o" obyektinın metodu kimi çağrırır. Funksiyaya metod ötürmək
// zərurəti yarandıqda bu funksiyadan istifadə etmək olar.
// Əgər metod obyektlə bağlı olmasa, assosiasiya itiriləcək və metod
// verilmiş funksiyaya adi funksiya kimi ötürələcək.

function bindMethod(/* obyekt */ o, /* funksiya */ f)
{

return function()

{
return f.apply(o, arguments)

}
}

// Sərbəst funksiyanı qaytarır, hansı ki, bu funksiya da öz növbəsində
// "f" funksiyasına verilmiş arqumentləri və əlavə olaraq
// qaytarılan funksiyaya verilən arqumentlər ötürür.
// (Bu üsul bəzi hallarda "currying" adlanır.)
function bindArguments(/* funksiya */ f, /* ilk arqumentlər... */)
{

var boundArgs = arguments;
return function()
{

// Arqumentlər massivinin yaradılması. Massiv əvvəl müəyyən edilmiş
// arqumentlərlə başlayacaq və indi verilmiş arqumentlərlə bitəcək
var args= [];
for (var i = 1; i < boundArgs.length; i++)
args.push(boundArgs [i]);
for (var i = 0; i < arguments.length; i++)
args.push(arguments [i]);
return f.apply(this, args); // İndi isə funksiyanı yeni arqument
 // siyahısıyla çağırırıq

}
}

8.8. Funksiyaların və qapanmanın görünmə sahəsi

4-cü fəsildə qeyd edildiyi kimi, JavaScript-də funksiyanın gövdəsi lokal görünmə
sahəsində işləyir. Qapanmalar daxil olmaqla bu bölmədə görünmə sahəsi ilə bağlı
məsələlərə baxılır.

8.8.1. Leksik görünmə sahəsi

JavaScript-də Funksiyalar dinamik olmayan, lakin leksik görünmə sahəsinə
malikdir. Bu onu bildirir ki, funksiyalar icra zamanı deyil, təyin edilmə zamanı
yaradılan görünmə sahəsində həyata keçirilir. Funksiyaların təyin edilmə anında
görünmə sahələrinin cari zənciri funksiyanın daxili vəziyyətinin hissəsində
saxlanılır. Yuxarı səviyyədə görünmə sahəsi sadəcə qlobal obyektdən ibarətdir və
bunları leksik görünmə sahəsinə aid etmək olmaz. Ancaq daxili funksiya elan
edilən zaman, onun görünmə sahələri zənciri bütöv funksiyanı əhatə edir. Bu onu
bildirir ki, daxili funksiya, bütöv funksiyada olan bütün arqumentlərə və lokal
dəyişənlərə giriş imkanına malikdir. Nəzərə alın ki, görünmə sahələri zənciri

funksiyanın təyin edilmə anında təsbit edilməsinə baxmayaraq, müəyyən edilmiş
xüsusiyyətlərin siyahısı bu zəncirdə təsbit edilmir. Görünmə sahələri zənciri
dəyişikliklərə meyillidir və funksiyanın icrası zamanı mövcud olan bütün
elementlərə müraciət edə bilər.

8.8.2. Çağırış obyek�
JavaScript interpretatoru funksiyanı çağıran zaman, ilk növbədə görünmə
sahələri zəncirinə müva�iq olaraq funksiyanın icrası zamanı qüvvədə olan
görünmə sahəsi qurulur. Sonra zəncirin başlanğıcına çağırış obyekti kimi bilinən
yeni obyekti əlavə edilir. Bu obyekti, ECMAScript spesi�ikasiyasında
aktivləşdirmə	 obyekti	 (activation	 object) termini ilə adlandırılır. Daha sonra
funksiyanın Arguments obyektinə istinad edən arguments xüsusiyyəti çağırış
obyektinə əlavə edilir. Bundan sonra isə, çağırış obyektinə funksiyanın
adlandırılmış arqumentləri əlavə edilir. var təlimatının köməyi ilə elan edilmiş
istənilən lokal dəyişən, həmçinin çağırış obyektinin daxilində də təyin edilir.
Madam ki, çağırış obyekti görünmə sahələri zəncirinin başlanğıcında yerləşir,
onda bütün lokal dəyişənlər, funksiya arqumentləri və Arguments obyekti
funksiyanın gövdəsindən görülən olur. Hər şeydən əlavə bu onu bildirir ki, bütün
eyni adlı xüsusiyyətlər görünmə sahəsi xaricində məlum olur. Nəzərə alın ki,
arguments-dən fərqli olaraq, this– çağırış obyektinin xüsusiyyəti deyil, sadəcə
açar sözüdür.

8.8.3. Çağırış obyek� ad fəzası qismində

Bəzən olur yalnız funksiyanı ona görə yaratmaq rahat, çağırışın obyektini almaq
üçün, hansı ki, müvəqqəti ad sahəsi kimi hərəkət edir (qüvvədə olur), harada op1
Bu bölmə olar yüksəldilmiş çətinliyin materialını özündə saxlayır, hansı ki, birinci
oxuma vaxtı buraxmaq olar. redelyat dəyişənlər və xüsusiyyətlər, qlobal ad
sahəsiylə mümkün münaqişələr haqqında narahat olmadan. Fərz edək, müxtəlif
JavaScript-proqramlarında (və ya, əgər proses JavaScript kliyent dilinə aiddirsə,
müxtəlif veb səhifələrdə) istifadə edilməsinə ehtiyac yaranan, JavaScript dilində
yazılmış kod faylı mövcuddur. Tutaq ki, həmin bu kodda, istənilən digər kodlarda
olduğu kimi, aralıq hesablamaların nəticələrinin saxlanılması üçün nəzərdə
tutulmuş dəyişən təyin edilib. Problem isə ondan ibarət ola bilər ki, madam bu
kod müxtəlif proqramlarda istifadə olunacaq, onda həmin proqramların
özlərində müəyyən edilən dəyişən adları ilə bu proqramda müəyyən edilən
dəyişən adları arasında münaqişə yarana bilər. Belə münaqişələrdən qaçmaq
üçün, idxal edilən kodu funksiya daxilinə yerləşdirmək və sonra da bu funksiyaya

müraciət etmək olar. Bunun sayəsində dəyişənlər funksiyanın çağırış obyektinin
daxilində təyin ediləcəklər:

function init()
{

// Burada idxal edilən proqram kodu yerləşir.
// Elan edilmiş istənilən dəyişən çağırış obyektinin xüsusiyyəti olacaq.
// Bununla da qlobal ad fəzasında münaqişə ehtimalı sıfıra enəcək.

}
init(); // Funksiyanı çağırmağı unutmayın!

Bu fraqment qlobal ad sahəsinə funksiyaya istinad edən bir ədəd init xüsusiyyəti
əlavə edir. Əgər bir ədəd xüsusiyyətin əlavə edilməsi də sizə artıq görünürsə,
funksiyanı bir ifadə şəklində anonim olaraq müəyyən etmək və sonra bu
funksiyanı çağırmaq olar. Aşağıdakı fraqment, bu prosesi əks etdirir:

(function (){
// Bu adsız funksiyadır.
// Burada idxal edilən proqram kodu yerləşir.
// Elan edilmiş istənilən dəyişən çağırış obyektinin xüsusiyyəti olacaq.
// Bununla da qlobal ad fəzasında münaqişə ehtimalı sıfıra enəcək.

}) (); // Funksional literalın sonu və funksiyanın çağırışı.

Funksional literalı əhatə edən yumru mötərizələrə nəzər yetirir. JavaScript
sintaksisi hər zaman bu mötərizələri tələb edir.

8.8.4. Daxili funksiyalar qapanma qismində

JavaScript funksiyaların daxilində funksiyaların elanına imkan verməklə,
funksiyalardan adi məlumatlar kimi istifadə etməyə də şərait yaradır və
həmçinin funksiyaların görünmə sahələri zəncirləri arasında qarşılıqlı təsiri
təşkil etməklə, proqramdan maraqlı və effektiv nəticələrin alınmasına səbəb olur.
I�zaha başlamazdan əvvəl, f funksiyasının daxilində təyin edilən g funksiyasına
baxaq. f funksiyası çağırılan zaman, bu funksiyanın görünmə sahələri zənciri
qlobal obyekti müşahidə edən çağırış obyektini ehtiva olunur. g funksiyası f
funksiyasının daxilində təyin edilir, beləliklə, f funksiyanın görünmə sahələri
zənciri g funksiyasının təyin hissəsi kimi saxlanılır. g funksiyası çağırılan zaman,
onun görünmə sahələri onun zənciri artıq üç obyekti ehtiva edir: şəxsi çağırış
obyekti, f funksiyasının çağırış obyekti və qlobal obyekti.
Daxili funksiyalar, müəyyən edildikləri leksik görünmə sahəsindən çağırılan
zaman, onların işləmə qaydası tamamilə aydın olur. Məsələn, aşağıda fraqmentdə
qeyri-adi heç nə yoxdur:

var x = "qlobal";

function f ()
{

var x = "lokal";
function g()
{

alert(x);
}
g();

}
f(); // Bu funksiyaya müraciət edən zaman "lokal" sözü ekranlaşdırılacaq
var x = "qlobal";
function f ()
{

var x = "lokal";
function g()
{

alert(x);
}
g();

}
f(); // Bu funksiyaya müraciət edən zaman "lokal" sözü ekranlaşdırılacaq

JavaScript-də funksiyalara adi məlumatlar kimi baxıldığına görə, funksiyaları
başqa funksiyalardan qaytarmaq, obyekt xüsusiyyətlərinə mənimsətmək,
massivlərdə saxlamaq və s. olar. Daxili funksiyaların yoxluğu halında burada da
qeyri-adi heç nə yoxdur. Aşağıdakı fraqmentə baxaq. Bu fraqmentdə müəyyən
edilən funksiya, daxili funksiyanı qaytarır. Bu funksiyaya hər bir müraciətdə
funksiya qaytarılır. Bu halda kodu JavaScript-in özü dəyişmir, amma çağırışdan
çağırışa görünmə sahəsini dəyişə bilər, çünki, əsas funksiyaya hər bir müraciətdə,
onun arqumentlərini dəyişə bilərlər. (Yəni, görünmə sahələri zəncirində əsas
funksiyanın çağırış obyekti dəyişəcək.) Əgər qaytarılan funksiyaları massivdə
saxlasaq və sonra da onların hər birini çağırsaq, bu funksiyalar müxtəlif
qiymətlər qaytaracaq. Çünki, funksiyanın proqram kodu belə olan halda dəyişmir
və funksiyaların hər biri öz görünmə sahələrində çağırılır və bu müəyyən edilmiş
funksiyaların görünmə sahələri arasında fərqə gətirib çıxarır:

// Bu funksiya başqa funksiyanı qaytarır
// Daxili funksiyanın müəyyənin edildiy çağırışdan çağırışa öz görünmə
// sahəsini dəyişir
function makefunc(x)
{

return function()
{

return x;
}

}
// makefunc() funksiyasını bir neçə dəfə çağırılması və nəticələrin massivdə
// saxlanılması:
var a = [makefunc (0), makefunc (1), makefunc (2)];

// İndi isə funksiyaları çağırırıq və onlardan alınmış qiymətləri
// ekranlaşdırırıq. Hərçənd ki, funksiyaların gövdəsi dəyişmir, amma
// bu funksiyaların görünmə sahələri dəyişir və hər bir çağırışda onlar
// müxtəlif qiymətləri qaytarır:
alert(a[0]()); // 0 ekranlaşdırılacaq
alert(a[1]()); // 1 ekranlaşdırılacaq
alert(a[2]()); // 2 ekranlaşdırılacaq

Bu fraqment gözlənilən nəticəni verir və iş prosesi leksik görünmə sahəsinin
qaydasına uyğundur: funksiya müəyyən edildiyi görünmə sahəsində icra edilir.
Ancaq ən maraqlısı ondan ibarətdir ki, görünmə sahələri əsas funksiyadan
çıxıldıqdan sonra da öz mövcuduğunu davam etdirir. Bu adi vəziyyətdə olmur.
Funksiya çağırılarkən, çağırış obyekti yaradılır və bu obyekt funksiyanın
görünmə sahəsində yerləşir. Funksiya işini bitirdiyi zaman, çağırış obyekti
çağırış zəncirindən silinir. Daxili funksiyaların yoxluğunda halında, çağırış
obyektinə yeganə istinad görünmə zənciridir. Obyektə olan istinad zəncirdən
silindiyi zaman, prosesə tullantı toplayıcısı daxil olur. Ancaq daxili funksiyaların
mövcudluğu halında vəziyyət dəyişir. Daxili funksiya təyin edilən zaman, çağırış
obyektinə əsaslanır, çünki, bu obyekt görünmə sahələri zəncirinin başlanğıcında,
yəni funksiyanın təyin edildiyi yerdə yerləşir. Əgər daxili funksiya yalnız əsas
funksiyanın daxilində istifadə olunursa, onda daxili funksiyaya yeganə istinad
çağırış obyektidir. Proqramın idarəsi xarici funksiyadan qaytarılan zaman, daxili
funksiya çağırış obyektinə istinad edir, amma çağırış obyekti daxili funksiya
timsalında heç bir funksiyaya istinad etmir, bunun sayəsində tullantıların
tənzimlənməsi mexanizmi funksiyalara əlçatan olur.
Əgər daxili funksiyaya istinad qlobal görünmə sahəsində saxlanılırsa vəziyyət
tamamilə dəyişir. Bu cür hallar, daxili funksiya əsas funksiyanın qaytarılan
qiyməti şəklində ötürüldükdə və ya hər hansı başqa obyektin xüsusiyyəti
şəklində saxlanıldığı zaman müşahidə edilir. Bu zaman daxili funksiyaya xarici
istinad meydana çıxır və belə olan halda da daxili funksiya əsas funksiyanın
çağırış obyektinə istinad etməyə davam edir. Nəticədə əsas funksiyaya hər belə
müraciət zamanı yaradılmış bütün çağırış obyektləri daxil olmaqla, funksiya
arqumentlərinin və lokal dəyişənlərin adları və qiymətləri də öz mövcudluğunu
davam etdirir. JavaScript-də çağırış obyektinə birbaşa təsir etmək imkanları
mövcud deyil, amma bu obyektin xüsusiyyətləri, daxili funksiyaya ixtiyari
müraciət zamanı yaradılan görünmə sahələri zəncirinin bir hissəsidir. (Nəzərə
alın ki, əgər əsas funksiyada iki daxili funksiyaya qlobal istinadlar mövcuddursa,
bu daxili funksiyalar eyni çağırış obyektini birgə istifadə edəcək və bu
funksiyalardan hər hansı birinə müraciət nəticəsində edilmiş dəyişikliklər o biri
funksiyada da ediləcək.)
JavaScript-də funksiyalar icra edilən proqram kodunun və görünmə sahəsinin
kombinasiyasından olunub. Kompüter terminologiyası üzrə olan ədəbiyyatlarda

proqram kodunun görünmə sahəsinin bu cür kombinasiyası qapanma (closure)
adlanır. JavaScript-də bütün qapanmadır. Ancaq bütün bu qapanmalar yalnız bir
marağı mövcuddur, yəni biraz əvvəl bəhs etdiyimiz kimi, daxili funksiya yalnız
müəyyən edildiyi görünmə sahəsi hüdudlarında ixrac edilir. Beləliklə istifadə
edilən daxili funksiyalar adətən aşkar qapanma adlandırılır. Qapanmalar – çox
maraqlı və güclü proqramlaşdırma texnikasıdır. Hərçənd ki, qapanmalar nadir
hallarda istifadə olunur, onları öyrənmək lazımdır. Əgər siz qapanma
mexanizmini başa düşsəniz, görünmə sahələrini asanlıqla anlayacaqsınız və
təcrübəli JavaScript proqramçısı olacaqsınız.

8.8.4.1. Qapanma nümunələri

Bəzən funksiya çağırışları arasında bir neçə qiymətin yadda saxlanılmasına
ehtiyac. Qiymət lokal dəyişəndə saxlanıla bilməz, çünki, funksiya müraciətlər
arasında öz çağırış obyektini saxlamır. Qlobal dəyişən belə vəziyyətdə çıxış yolu
ola bilər, amma bu ad fəzasının dolmasına gətirib çıxarır. Bölmə 8.6.3-də
uniqueInteger() funksiyası göstərilmişdir, hansı ki, belə vəziyyətlər üçün
funksiyaya şəxsi xüsusiyyəti cəlb edilmişdir. Odna16 sonra getmək və
neisçezayuşey dəyişənin şəxsi (private-ı) yaradılması üçün qısa qapanmadan
istifadə etmək olar.
Aşağıda başlanğıc üçün bu funksiyanın qapanmasız nümunəsi göstərilmişdir:

//Hər bir çağırışda müxtəlif qiymətlərini qaytarılır
uniqueID= function(){
if(!arguments.callee.id) arguments.callee.id = 0;

return arguments.callee.id++;
};

Burada problem ondadır ki, uniqueID.id xüsusiyyəti funksiya xaricində
əlçatandır və qiymət 0 olaraq təyin edilsə, "funksiyanın heç vaxt eyni qiyməti iki
dəfə qaytarmamaq tapşırığı" uğursuzluğa düçar olur. Bu problemi həll etmək
üçün qiyməti qapanmada saxlamaq olar və belə olan halda qiymət giriş yalnız bu
funksiyadan mümkün olacaq:

uniqueID = (function()
{

// Qiymət funksiyanın çağırış obyektində saxlanılır
var id = 0;

// Bu xüsüsi dəyişən, öz qiymətini funksiya çağırışları arasında saxlayır
// Xarici funksiya bu qiymətə giriş edə bilən
// daxili funksiyanı qaytarır. Bu daxili funksiya uniqueID dəyişənindən
// yuxarıda saxlanılır.

return function() { return id++; }; // Qiymətin artırılması və qaytarılması

}) (); // Xarici funksiyanı təyin etdikdən sonra çağırışı.

Nümunə	8.6-da daha bir qapanma nümunəsi göstərilmişdir. Nümunədə xüsusi
dəyişənlər qismində nümayiş etdirilən dəyişənləri, əvvəl göstərilmişdi, bir neçə
(bir qədər) funksiyayla birgə istifadə oluna bilərlər.

Nümunə	8.6.	Qapanmaların	köməyilə	şəxsi	xüsusiyyətlərin	yaradılması

// Bu funksiya verilmiş adlara uyğun "o" obyektinin xüsusiyyətinə
// giriş metodlarını əlavə edir.
// Metodlar get<name> və set<name> əldə edir. Əgər əlavə olaraq yoxlama
// funksiyası verilərsə, yazı metodu saxlanmadan öncə qiymətin yoxlanılması
// üçün bu funksiyadan istifadə edəcək. Əgər yoxlamanın funksiyası false
//qaytararsa, yazı metodu istisnanı yaradır.
//
// Belə yanaşmanın qeyri-adiliyi ondadır ki, metodlara əlçatan olan
// xüsusiyyət qiyməti, "o" obyektinin xüsusiyyəti şəklində deyil bu
// funksiyanın lokal dəyişəni şəklində saxlanılır.
// Bundan başqa, giriş metodları lokal miqyasda müəyyən edilmişdir, buna görə
// də metodlar bu funksiyaya və bu lokal dəyişənə giriş edə bilirlər.
//
// Nəzərə almaq lazımdır ki, qiymət yalnız bu iki metod üçün əlçatandır və
// yazı metodu kimi təyin edilə və ya hər hansı formada dəyişdirilə bilməz.

function makeProperty (o, name, predicate)
{

var value; // Bu xüsusiyyətin qiymətidir

// Oxuma metodu sadəcə qiyməti qaytarır.
o["get" + name] = function(){ return value; };

// Yazı metodu əgər yoxlama funksiyasının nəticəsi true olarsa qiyməti
// saxlayır,əks təqdirdə istisna yaradır.
o ["set" + name] = function (v){
if (predicate &&! predicate (v))

throw "set" + name + ": səhv qiymət"+ v;
else

value = v;
};

}
// Növbəti fraqment makeProperty() metodunun işini göstərir.
var o ={}; // Boş obyekt

// getName() və setName() adlı xüsusiyyətə giriş metodlarını əlavə etmək
// yalnız sətir qiymətlərinin mümkünlüyünü təmin etmək
makeProperty(o, "Name", function (x){ return typeof x == "string"; });

o.setName("Frank"); // Xüsusiyyətin qiymətini təyin etmək
print(o.getName ()); // Xüsusiyyətin qiymətini əldə etmək
o.setName(0); // Xüsusiyyətə xətalı tipdə qiymət təyin etmək cəhdi

Qapanmalara aid mənə məlum olan ən praktik nümunə – Stiv	 Yen	 (Steve	 Yen)
tərə�indən hazırlanmış və TrimPath kliyent platformasının bir hissəsi kimi
http://trimpath.com saytında dərc edilən dayanma nöqtələri mexanizmidir.
Dayanma	 nöqtəsi – funksiyanın daxilində elə bir nöqtədir ki, bu nöqtədə
proqramın icrası dayanır və developerə (proqram istehsal edən) dəyişənlərin
qiymətlərini gözdən keçirmək, ifadələri hesablamaq və ilaxır funksiyaları
çağırmaq və s. imkanlara şərait yaradılır. Stiv Yens tərə�indən düşünülmüş
dayanma nöqtələri mexanizmində qapanmalar cari funksiyanın (lokal dəyişənlər
və giriş arqumentləri daxil olmaqla) icra kontekstinin saxlanılmasına xidmət edir
və qlobal eval() funksiyasının köməyilə bu kontekstin tərkibini gözdən
keçirməyə imkan verir. eval() funksiyası JavaScript dilində sətirlərdən
qiymətlər alınmasına xidmət edir. Aşağıda öz icra kontekstini yoxlayan, qapanma
kimi işləyən daxili funksiya nümunəsi göstərilmişdir:

// Cari konteksti yadda saxlamaq və onu eval() funksiyasının köməyi ilə
// yoxlamağa icazə vermək
var inspector = function ($){ return eval ($);}

Funksiya arqument adı kimi nadir hallarda istifadə edilən $ identi�ikatorundan
istifadə edir ki, bu da yoxlanılan görünmə sahəsində olan adların münaqişə
ehtimalı aşağı salır. Nümunə 8.7-də göstərilən qapanmanı verməklə, dayanma
nöqtəsini yaratmaq olar.

Nümunə	8.7.	Qapanmalar	əsasında	dayanma	nöqtələri

// Bu funksiya dayanma nöqtəsinin realizasiyasıdır. Funksiya,
// istifadəçiyə ifadəni daxil etmək təklifi edir, daxil edilən ifadəni
// qapanmalar vasitəsilə hesablayır və nəticəni ekranlaşdırır. İstifadə
// edilən qapanma yoxlanan görünmə sahəsinə giriş imkanı verir, beləliklə
// istənilən funksiya öz şəxsi qapanmasını yaradacaq.
//
//breakpoint() funksiyasının obrazı və bənzərliyi üzrə Stiv Yens tərəfindən
// realizasiya olunub.
// http://trimpath.com/project/wiki/TrimBreakpoint

function inspect (inspector, title)
{

var expression, result;

// Bu funksiyada "ignore" xüsusiyyətinin yaradılması hesabına
// dayanma nöqtələrini kəsmək olar.

if ("ignore" in arguments.callee) return;
while(true)
{

// Sorğunu istifadəçidən əvvəl müəyyən edirik
message = "";
// Əgər title arqumenti verilmişdirsə, onda birinci onu çıxarırıq

http://trimpath.com/

if(title) message = title + "\n";
// Əgər ifadə artıq hesablanmışsa, onu qiymətiylə birlikdə çıxarırıq
if (expression) message += "\n" +expression+" ==> "+result+" \n";
else expression = "";
// İstifadəçini həmişə daxil edilməyə dəvət etmək lazımdır:
message += "Zəhmət olmasa hesablmamaq istədiyiniz ifadəni daxil edin:";
// İstifadəçinin daxil etdiyi informasiyanı əldə etmək, dəvəti silmək və
// son ifadəni susmaya görə qiymət kimi istifadə etmək
expression = prompt(message, expression);

// Əgər istifadəçi heç nə daxil etmədisə (və ya imtina düyməsini
// kliklədisə), işi dayanma nöqtəsində bitmiş hesab etmək olar
// və bu zaman idarəetmə qaytarılır.
if (!expression) return;

// Əks təqdirdə icra kontekstində yoxlanılan
// qapanma vasitəsilə ifadəni hesablamaq.

// Nəticələr növbəti iterasiyada ekranlaşdırılacaq.
result = inspector(expression);

}
}

Nəzərə alın ki, informasiyanın çıxarılması və istifadəçinin sətir daxil etməsi üçün
nümunə 8.7-dəki inspect() funksiyası window.prompt() metodunu cəlb
edəcək.

Ədədin fatorialını hesablayan və dayanma nöqtələri mexanizmindən istifadə
edən funksiya nümunəsinə baxaq:

function factorial(n)
{
// Funksiya üçün qapanmanın yaradılması
var inspector = function($)
{
return eval($);

}
inspect(inspector, "factorial() funksiyasına giriş");
var result = 1;
while(n > 1)
{
result = result * n;
n--;
inspect(inspector, "factorial () loop");

}
inspect (inspector, "factorial() funksiyasından çıxış");
return result;

}

8.9. Func�on() konstruktoru

Əvvəldə də deyildiyi kimi, funksiyalar adətən Function açar sözünün köməyilə
və ya funksiyanın təyinləri formasında, və ya funksional çap səhvinə vasitəsi ilə
təyin edilir. Ancaq bundan başqa Function() konstruktorunun köməyilə də
funksiyaların yaradılması imkanı mövcuddur. Function() konstruktorunun
köməyilə funksiyaların yaradılması digər üsullara nisbətən mürəkkəb hesab
edildiyinə görə, çox az istifadə olunur. Aşağıda oxşar tərzdə yaradılmış funksiya
nümunəsi göstərilmişdir:

var f = new Function(" x", "y", "return x*y;");

Bu sətir aşağıdakı sintaksisə ekvivalent yeni funksiyanı yaradır:

function f(x, y){ return x*y;}

Function() konstruktoru istənilən miqdarda arqumenti sətir şəklində qəbul
edir. Sonuncu arqument – funksiyanın gövdəsində. Bu arqument bir-birindən
nöqtəli vergüllərlə ayırılmış istənilən qədər JavaScript-təlimatı ehtiva edə bilər.
Konstruktorun qalan bütün arqumentləri müəyyən edilən funksiyanın parametr
adlarını verən sətirlərdən təşkil olunur. Əgər siz funksiyanı arqumentlərsiz
müəyyən etmək istəyirsinizsə, onda konstruktor yalnız bir sətir – funksiyanın
gövdəsini ötürmək lazımdır. Nəzərə alın ki, Function() konstruktoruna
yaradılan funksiyanın adını verən arqument ötürülmür. Function()-
konstruktorunun köməyilə yaradılmış adlandırılmayan funksiyalar bəzən
anonim funksiya da adlanır. Function()-konstruktoru ilə bağlı bir neçə məqamı
xüsusi olaraq diqqətinizə çatdıraq:
• Function() konstruktoru proqramın icrası zamanı dinamik olaraq
funksiyaların yaradılması və onların kompilyasiya olunmasına şərait yaradır.
• Function() konstruktoru yeni funksiyanı hər çağırışda kompilyasiya edir və
yaradır. Əgər konstruktor çağırışı dövr və ya tez-tez çağırılan funksiyanın
gövdəsində olarsa, bu proqramın məhsuldarlığında mən�i təsir edə bilər. Buna
zidd olaraq dövrün daxilində olan funksional literallar və ya daxili funksiyalar hər
iterasiyada yenidən kompilyasiya olunmur, bundan başqa, literal halında
funksiyanın yeni obyekti yaradılmır. (Hərçənd, bu halda artıq qeyd edildiyi kimi,
funksiyanın müəyyən edildiyi leksik konteksti ehtiva edən yeni qapanma
yaradılması daha yaxşıdır.)
• Və sonda çox vacib məqam: funksiya Function()-konstruktorunun köməyilə
yaradılan zaman, cari leksik görünmə sahəsi nəzərə alınmır – bu yolla yaradılmış
funksiyalar həmişə yuxarı səviyyəli funksiyalar kimi kompilyasiya edilirlər ki,
növbəti fraqment bunu əyani olaraq nümayiş etdirir:

var y = "qlobal";
function constructFunction()
{

var y = "lokal";
return new Function ("return y"); // lokal konteksti saxlamır!

}
// Aşağıda nəticə olaraq "qlobal" sözü ekranlaşdırılacaq, çünki Function()
// funksiya, lokal kontekst istifadə etmir.
// konstruktoru ilə Əgər funksiya literal şəklində müəyyən edilsəydi,
// nəticə olaraq "lokal" sözü ekranlaşdırılacaqdı.
alert(constructFunction()()); // "qlobal" sözünü ekranlaşdırır

9
Siniflər, konstruktorlar və

prototiplər

7-ci fəsildə JavaScript- obyektlərinə müqəddimə verilmiş və qeyd edilmişdi ki,
hər bir obyekt istənilən digər obyektdən öz unikal xüsusiyyət dəsti ilə fərqlənir.
Obyekt yönümlü proqramlaşdırma dillərinin əksəriyyətində obyektlərin
sini�lərini müəyyən etmək və sonra bu sini�lərin nüsxələri qismində ayrı-ayrı
obyektlər yaratmaq imkanı mövcuddur. Məsələn, kompleks ədədləri təqdim
etmək və bu ədədlər üzərində hesab əməllərini yerinə yetirmək üçün çağırılmış
Complex sini�ini elan etmək olar, onda Complex obyekti bir kompleks ədədi
təqdim edərdi və bu sini�in nüsxəsi kimi yaradıla bilərdi. JavaScript dili Java, C++,
C# və bu kimi dillərə nisbətən tam olaraq sinif dəstəyinə malik deyil. Bununla
belə JavaScript-də funksiya-konstuktorları və obyekt prototipləri kimi
instrumental vasitələrin köməyilə psevdosini�lər müəyyən etmək imkanı
mövcuddur. Bu fəsildə JavaScript-də olan konstruktorlardan və prototiplərdən
bəhs edilir və bir sıra psevdosinif və hətta psevdoaltsinif nümunələri göstərilir.
Bu fəsildə "sinif" sözündən qeyri-rəsmi istifadə edilir, buna görə diqqətli olun və
JavaScript dəstəklənməyən, lakin əksər OYP dillərində olan əsl sini�lərlə bu qeyri-
formal "sini�ləri" qarışdırmayın. Qeyd edək ki, JavaScript 2.0-versiyasının sinif
mexanizmini tam olaraq dəstəkləməsi planlaşdırılır.

9.1. Konstruklar

7-ci fəsildə {} literalının, həmçinin new Object() ifadəsinin köməyilə yeni boş
obyektin yaradılmasını şahidi olduq. Bundan başqa, digər tiplərdə olan
obyektlərin yaradılması qaydası təxminən aşağıdakı formada nümayiş
etdirilmişdi:

var array = new Array(10);
var today = new Date();

new operatorunda funksiya-konstruktorunun adı göstərilməlidir. new operatoru
yeni obyekti heç bir xüsusiyyəti olmadan yaradır və yaradılmış obyekti this
açar sözünün qiyməti şəklində funksiyaya ötürür və bu funksiyanı çağırır. new

operatoru ilə birgə tətbiq edilən həmin funksiya funksiya-konstuktoru və ya
sadəcə konstruktor adlanır. Konstruktorun əsas işi yeni yaradılmış obyektin
inisializasiyasından ibarətdir yəni, konstruktora qədər inisializasiya ediləsi
bütün xüsusiyyətləri qruplaşdıraraq, obyekti proqramda istifadə olunacaq şəklə
salmaqdır. Şəxsi konstruktor müəyyən etmək üçün, obyektə, this açar sözünə
istinad etməklə yeni xüsusiyyətlər əlavə edən funksiya yazmaq kifayətdir.
Aşağıdakı fraqmentdə iki obyektin konstruktorunun təyini göstərilir:

// Konstruktoru müəyyən edirik.
// Nəzərə alın ki, obyekt "this" açar sözünün köməyilə inisializasiya olunur.

function Rectangle(w, h){

this.width = w;
this.height = h;

}

// İki Rectangle obyektinin yaradılması üçün konstruktoru çağırırıq. Biz
// konstruktora en və hündürlük veririk ki, hər iki yeni obyekti düzgün
// insiallaşdırmaq mümkün olsun.
var rect1 = new Rectangle(2, 4); // rect1 ={ width:2, height:4 };
var rect2 = new Rectangle(8.5, 11); // rect2 ={ width:8.5, height:11 };

Nəzərə alın ki, konstruktor obyektin this açar sözünə istinad edən
xüsusiyyətlərinin inisializasiyası üçün öz arqumentlərindən istifadə edir. Burada
biz sadəcə uyğun olan funksiya-konstuktorunu yaradıb obyektlərin sini�ini
müəyyən etdik – Rectangle()-konstruktorunun köməyilə yaradılmış bütün
obyektlər zəmanətli olaraq inisializasiya edilmiş width və height
xüsusiyyətlərinə malik olacaq. Bu onu bildirir ki, şəraitdən asılı olaraq, eyni işi
Rectangle sini�inin bütün obyektləri ilə təşkil etmək olar. Bir halda ki, hər bir
konstruktor obyektlərin sini�ini ayrılıqda müəyyən edir, funksiya-konstuktoruna
bu cür ad mənimsətmək çox yaxşıdır, hansı ki, bu halda funksiya-konstuktorunun
köməyilə yaradılan obyektlərin sini�i açıq-aydın əks olunacaq. Məsələn,
düzbucaqlı dördbucağın obyektini yaradan new Rectangle(1, 2) sətiri new
init_rect(1, 2) sətirinə nisbətən daha aydın görünür.
Adətən funksiya-konstuktorları heç nə qaytarmır, onlar yalnız this açar sözünün
qiyməti qismində alınmış obyekti inisializasiya edirlər. Ancaq konstruktorlar
üçün obyekt qaytarmaq imkanı mövcuddur və qaytarılan obyekt new ifadəsinin
qiyməti olur. Bu halda konstruktora this açar sözünün qiyməti şəklində verilmiş
obyekt sadəcə olaraq silinir.

9.2. Proto�plər və varislik

8-ci fəsildə deyilirdi ki, metod – obyektin xüsusiyyəti kimi çağırılan funksiyadır.
Funksiya bu yolla çağırılan zaman, çağırış obyekti, this açar sözünün qiyməti
olur. Fərz edək ki, bizə Rectangle obyekti ilə təqdim edilmiş düzbucaqlı
dördbucağın sahəsini hesablamaq lazımdır. Bunun üçün mümkün üsullardan biri
aşağıda göstərilir:

function computeAreaOfRectangle(r){ return r.width * r.height; }

Bu funksiya öz işinin öhdəsindən layiqincə gəlir, lakin bu funksiya obyekt
yönümlü deyil. Obyektlə işləyərkən, obyekt metodlarını çağırmaq və obyektləri
arqumentlər qismində yad funksiyalara verməmək daha yaxşıdır. Bu yanaşma
aşağıdakı fraqmentdə nümayiş etdirilir:

// Rectangle obyektinin yaradılması
var r = new Rectangle(8.5, 11);
// Obyektə metod əlavə edirik
r.area = function() { return this.width * this.height; }
// İndi, obyektin metodunu çağırmaqla sahəni hesablaya bilərik
var a = r.area();

Əlbəttə ki, obyektin istifadəsindən əvvəl ona yeni metodu əlavə etmək
narahatdır. Ancaq, əgər area xüsusiyyətini funksiyası-konstruktorunda
inisializasiya etsək bu vəziyyəti yaxşılaşdırmış olarıq. Deməli belə, Rectangle()
konstruktorunun təkmil realizasiyası aşağıdakı qaydada olur:

function Rectangle(w, h) {
this.width = w;
this.height = h;
this.area = function() { return this.width * this.height; }

}

Eyni alqoritmi konstruktorun yeni versiyasında digər formada realizasiya etmək
olar:

// U.S kağız formatında olan vərəqin kv. düymlə sahəsinin tapılması.
var r = new Rectangle(8.5, 11);
var a = r.area();

Bu cür həll daha yaxşı görünə bilər, amma bu həll əvvəlki kimi optimal deyil.
Yaradılmış hər bir düzbucaqlı dördbucaq üç xüsusiyyətə malik olacaq. width və
height xüsusiyyətləri hər bir düzbucaqlı dördbucaq üçün unikal qiymətlərə
malik ola bilər, amma Rectangle obyektinin ayrılıqda götürülmüş hər bir area
xüsusiyyəti həmişə eyni funksiyaya istinad edəcək (əlbəttə, bu xüsusiyyəti iş
prosesində dəyişdirmək olar, amma, bir qayda olaraq, obyekt metodları
dəyişdirilməməlidir). Obyekt metodlarının eyni sini�in bütün nüsxələrində

istifadə olunması üçün ayrı-ayrı xüsusiyyətlərdə saxlanılması çox effektsiz həll
üsuludur.
Ancaq, bu problemi həll etmək olar. Məlumdur ki, JavaScript-də bütün obyektlər
prototip adlanan daxili istinadı özündə saxlayır. Prototipin istənilən xüsusiyyəti
prototipi olan digər obyektin xüsusiyyəti olur. Yəni, başqa sözlə desək, ixtiyari
JavaScript-obyekti öz prototipinin xüsusiyyətlərini müşahidə edir.
Əvvəlki bölmədə, new operatorunun boş obyekti yaratdığı və sonra funksiya-
konstuktorunu çağırdığı barədə bəhs edilmişdi. Amma bununla iş bitmir. Boş
obyektin yaradılmasından sonra new operatoru bu obyektdə prototip istinadı
qurur. Konstruktor funksiyasının prototype xüsusiyyət qiyməti obyektin
prototipidir. Bütün funksiyalar təyin edilərkən inisializasiya olunan prototype
xüsusiyyətinə malikdir. Bir xüsusiyyətli obyekt bu xüsusiyyətin ilk qiymətidir.
Həmin bu xüsusiyyət constructor adlanır və onun qiyməti prototipi
assosiasiya edən funksiya-konstruktoruna istinad edir. (constructor
xüsusiyyəti 7-ci fəsildə təsvir	olunmuşdur, burada isə, sadəcə hər bir obyektin
nəyə görə constructor xüsusiyyətinə malik olduğu izah olunur.) Prototipə
əlavə edilmiş istənilən xüsusiyyət avtomatik olaraq konstruktor tərə�indən
inisializasiya edilən obyektin xüsusiyyəti olur. Aşağıdakı nümunədə bunu daha
aydın izah etmək olar. Nümunədə Rectangle() konstruktorunun yeni versiyası
göstərilir:

// Konstruktor funksiyası hər biri ayrı-ayrı nüsxə üçün unikal qiymətə malik
// olan xüsusiyyətləri inisializasiya edir
function Rectangle(w, h){

this.width = w;
this.height = h;

}

// Obyekt-prototipi metodları və başqa xüsusiyyətləri özündə
// saxlayır, hansı ki, bunlar sinifin bütün nüsxələrində birgə istifadə oluna
// bilər.
Rectangle.prototype.area = function(){

return this.width * this.height;
}

Konstruktor "sini�i" obyektləri müəyyən edir və sini�in hər bir nüsxəsi üçün fərqli
ola bilən width və height kimi xüsusiyyətləri inisializasiya edir. Obyektin
prototipi konstruktora bağlıdır və konstruktor tərə�indən inisializasiya edilmiş
prototipi olan hər bir obyektin xüsusiyyətlər dəstinə varis olur. Bu isə o deməkdir
ki, obyekt prototipi – metodlar və başqa sabit-xüsusiyyətlər üçün mükəmməl
yerdir.
Nəzərə alın ki, varislik - xüsusiyyət qiymətinin axtarış prosesinin bir hissəsi kimi
avtomatik həyata keçirilir. Xüsusiyyətlər yeni obyektə prototip obyektindən
yamsılanmır; onlar sadəcə olaraq, obyekt xüsusiyyətləri qismində olurlar.

Buradan iki əhəmiyyətli nəticə çıxır. Birincisi, obyekt-prototipindən istifadə, hər
bir obyekt üçün tələb edilən yaddaşın həcmini önəmli ölçüdə azalda bilər çünki,
bu halda obyektlərin öz xüsusiyyətlərindən bir çoxu varis ola bilər. I�kincisi, hətta
obyektin yaradılmasından sonra prototipə əlavə edilmiş obyekt xüsusiyyətləri də
varis olur. Bu mövcud sini�lərə yeni metodları əlavə etmək imkanının
mövcudluğunu bildirir (hərçənd bu tamamilə düzgün deyil).
Varis olunmuş xüsusiyyətlər adi obyekt xüsusiyyətlərindən heç nəylə fərqlənmir.
Onlar for/in dövründə sadalana və in operatorunun köməyilə yoxlana bilər.
Onları adi obyekt xüsusiyyətlərindən yalnızca Object.hasOwnProperty()
metodunun köməyilə ayırmaq mümkündür:

var r = new Rectangle(2, 3);
r.hasOwnProperty("width"); // true: width – "r"
r.hasOwnProperty("area"); // false: area – "r" bilavasitə xüsusiyyətidir
"area" in r; // true: area – "r" varis olunmuş xüsusiyyətidir

9.2.1 Varis olunmuş xüsusiyyə�n oxunması və yazılması

Hər bir sinifdə bir xüsusiyyət dəsti olan bir obyekt-prototipi mövcuddur, amma
potensial olaraq sini�in bir çox nüsxəsi mövcud ola bilər, hansı ki, bu nüsxələrin
hər biri prototip xüsusiyyətlərinə varis olur. Prototip xüsusiyyəti bir çox
obyektlərlə varis oluna bilər, buna görə də JavaScript interpretatoru xüsusiyyət
qiymətlərinin oxunması və yazılışı arasında fundamental assimmetriyanı təmin
etməlidir. Siz o obyektinin p xüsusiyyətini oxuduğunuz zaman, JavaScript əvvəlcə
o obyektində p adlı xüsusiyyətin mövcudluğunu yoxlayır. Əgər burada belə
xüsusiyyət yoxdursa, onda, obyekt-prototipində p adlı xüsusiyyətin mövcudluğu
yoxlanılır. Prototiplər əsasında varislik bu cür işləyir. Ancaq xüsusiyyətə qiymət
mənimsədilən zaman, JavaScript obyekt-prototipindən istifadə etmir. Gəlin
bunun niyə belə olduğunu düşünək: fərz edək, siz o.p xüsusiyyətinə qiymət təyin
etmək istəyirsiniz, amma o obyektində p adlı xüsusiyyətlər mövcud deyil. I�ndi
isə, fərz edək ki, JavaScript p xüsusiyyətinin axtarışının obyekt prototipdə davam
etdirir və protipində p xüsusiyyətinin mövcudluğu halında sizə prototipin
xüsusiyyət qiymətini dəyişdirməyə imkan verir. Nəticədə siz p qiymətini
obyektin bütün sini�ləri üçün dəyişdirirsiniz, lakin sizdən bu tələb olunmurdu.
Buna görə də, xüsusiyyətlərin varisliyi yalnız xüsusiyyət qiymətlərinin oxunması
zamanı mövcud olur. Əgər siz o obyektində p xüsusiyyətini qurursunuzsa (hansı
ki, bu xüsusiyyətə öz prototipindən varis olur), yadınızda saxlayın ki, yeni p
xüsusiyyətin yaradılması bilavasitə obyektdə olacaq. I�ndiki halda, o obyekti p
adlı şəxsi xüsusiyyətə malik olduğu zaman, o prototipdən p qiyməti daha varis
olmur. Siz p qiymətini oxuduğunuz zaman, JavaScript onu əvvəlcə o obyektinin
xüsusiyyətlərində axtarır. Bu zaman, o obyektində müəyyən edilmiş p

xüsusiyyəti tapılır və xüsusiyyətin obyekt-prototipdə axtarılması ehtiyac qalmır.
Biz bəzən bu hadisəni, p xüsusiyyətinin obyekt-prototipin p xüsusiyyətini
"kölgədə qoyması" kimi adlandırırıq. Prototiplərin varisliyi sözlərlə ifadəsi
dolaşıq görünə bilər, buna görə də yuxarıda göstərilən bütün nüansların şəkil
formasında təsviri daha yaxşıdır.

Burada area xüsusiyyətinin müəyyən edilməsi yerləşir. Əgər sözügedən xüsusiyyət c obyektinin özündə
mövcuddursa, onda bu qiymət qaytarılır
c.area()
c obyektindən area
xüsusiyyətini əldə edir
area xüsusiyyəti c obyektinin özündə müəyyən edilmir, buna görə də c obyektinin obyekt-prototipi ilə
asossasiya edildiyini yoxlamaq lazımdır.

Circle obyekti, c
r=1.0
x=2.0
y=3.0

c.pi=4;
c obyektindəki pi
xüsusiyyətinə qiymət
mənimsədilməsi
pi xüsusiyyəti müəyyən edilməyib, buna görə də c obyektinin özündə yeni xüusiyyət yaradılır.

Obyekt-prototipi,
Object.prototype

area=Circle_area

pi=3.14159

Circle obyekti, c
r=1.0
x=2.0
y=3.0
pi=4;

pi və r xüsusiyyətləri c obyektinin özündə müəyyən edilib, buna görə də qaytarılan qiymət burada yerləşir və
artıq obyekt-prototipinə müraciət edilmir.
a=c.pi*c.r*c.r;
c obyektindəki pi
və r xüsusiyyətinin oxunması

Circle obyekti, d
r=2.0
x=0.0
y=0.0

Burada area xüsusiyyətinin müəyyən edilməsi yerləşir. Əgər sözügedən xüsusiyyət c obyektinin özündə
mövcuddursa, onda bu qiymət qaytarılır
a=d.pi*d.r*d.r;
d obyektindəki pi
və r xüsusiyyətinin oxunması
pi xüsusiyyəti müəyyən edilməyib, buna görə d obyekti ilə assosiasiya edilmiş obyekt-prototipinə müraciət
edilir.

Şəkil.	9.1. Obyektlər	və	prototiplər

Prototipin xüsusiyyətləri sini�in bütün obyektləri ilə birgə istifadə olunur, buna
görə də, bir qayda olaraq, onları yalnız sini�in bütün obyektləri üçün uyğun olan
xüsusiyyətlərin təyini üçün tətbiq etmək lazımdır. Bu prototiplər metodların
təyini üçün mükəmməldir. Digər sabit xüsusiyyət qiymətləri (məs., riyazi
sabitlər) başqa xüsusiyyətlər həmçinin prototipin xüsusiyyətləri kimi təyin üçün
yarayır. Əgər sinifdə tez-tez istifadə edilən susmaya görə qiymət ehtiva edən
xüsusiyyəti müəyyən edilirsə, onda bu xüsusiyyəti və onun susmaya görə
qiymətini obyekt-prototipində müəyyən etmək olar. Belə olan halda, susmaya
görə qiymətləri dəyişdirmək imkanı olan obyektlər, özündə bu xüsusiyyətin
surətini yarada və surətin qiymətini susmaya görə qiymətlərə toxunmadan
dəyişə bilər.

9.3. Obyekt yönümlü proqramlaşdırma

JavaScript obyekt adlandırdığımız məlumat tipi dəstəkləməsinə baxmayaraq, bu
dildə formal sinif anlayışı yoxdur. JavaScript-in bu xüsusiyyəti onu C++ və Java
kimi klassik OYP dillərindən fərqləndirir. Obyekt yönümlü dillərin ümumi
xüsusiyyəti ciddi tipləşdirmə və sini�lər əsasında varisliyin mexanizminin
mövcudluğudur. JavaScript bu meyarlara cavab verməsə də obyekt yönümlü
proqramlaşdırma dillərinə aid edilir. Digər tərəfdən, biz gördük ki, JavaScript
obyektlərdən fəal istifadə edir və prototiplər əsasında varisliyin xüsusi tipinə
malikdir. Bu dilin bəzi realizasiyaları (nisbətən az tanınanları) yönəlmiş dillər
obyekt, hansılarda ki, sini�lər əsasında varisliyin yerinə prototiplər əsasında
varislik reallaşdırılmışdır.
JavaScript – sini�lərə əsaslanmayan obyekt yönümlü dil olmasına baxmayaraq,
Java və C++ dilləri kimi sini�lər əsasında dillərin imkanlarını təqlid edir yaxşıdır,
belələr Java və C++ kimi. Bu fəsildə "sinif" terminindən qeyri-formal olaraq
istifadə edilir.21

Gəlin, öncə bəzi baza terminlərindən başlayaq. Bildiyimiz kimi obyekt	 –
adlandırılmış	 məlumatların	 müxtəlif	 fraqmentlərini,	 həmçinin	 məlumatların	 bu
fraqmentləriylə	 işləmək	 üçün	 metodlar	 ehtiva	 edən	 məlumatlar	 strukturudur.
Obyekt vahid nizamlı qiymətləri və metodları qruplaşdırır və bu da öz
növbəsində kodun çoxqat istifadəsi üçün modulluğun və imkanın dərəcəsini
artıraraq proqramlaşdırma prosesini yüngülləşdirir. JavaScript-də obyektlər
istənilən miqdarda xüsusiyyətə malik ola bilər və xüsusiyyətlər obyektə dinamik
əlavə edilə bilər. Java və C++ kimi ciddi tipləşdirilmiş dillərdə bu belə deyil.
Onlarda istənilən obyekt qabaqcadan müəyyən edilmiş xüsusiyyət22 dəstinə
malikdir və hər bir xüsusiyyətin tipi qabaqcadan müəyyən edilməlidir.
JavaScript-obyektləri vasitəsilə obyekt yönümlü proqramlaşdırma üsullarını
təqlid edərək, bir qayda olaraq, qabaqcadan hər bir obyekt və məlumat tipində
olan xüsusiyyət üçün xüsusiyyətlər dəsti müəyyən edirik
Java və C++-da sinif, obyekt strukturunu müəyyən edir. Sinif, obyektin ehtiva
etdiyi etdiyi sahəni və məlumat tipini dəqiq göstərir. Həmçinin sinif, obyektlə
işləmək üçün metodlar müəyyən edir. JavaScript-də formal sinif anlayışı yoxdur,
amma, biz gördük ki, bu dildə sinif imkanlarına konstruktor və obyekt-
prototiplərin köməyilə reallaşır.
JavaScript, sini�lərə əsaslanan bir çox OYP dilləri kimi bir sini�in daxilində bir
neçə obyektinin mövcudluğunu icazə verir. Biz adətən deyirik ki, obyekt sini�in
nüsxəsidir. Beləliklə, eyni zamanda istənilən sini�in bir çox nüsxəsi mövcud ola
bilər. Bəzən obyektin yaradılması prosesinin təsviri üçün (yəni. sini�in nüsxəsi)
nüsxənin yaradılması terminindən istifadə olunur. Java proqramlaşdırma dili ilə
ilk tanışlıq zamanı sinif adlarının böyük, obyekt adlarının isə kiçik hər�lərlə
başlanması qaydası təlqin edilir. Bu qayda mənbə mətnlərindəki sini�ləri və
obyektləri ayırmağa kömək edir. Bu qaydanı JavaScript-də də tətbiq etməyin

arzuolunandır. Məsələn, əvvəlki bölmələrdə biz Rectangle sini�ini müəyyən
etdik və bu sini�in nüsxələrini rect kimi adlarla yaratdıq.
Java-da sinif üzvləri dörd əsas tipdən birinə aid ola bilər: nüsxə xüsusiyyətləri,
nüsxə, sinif xüsusiyyəti və sinif metodları metodları. Növbəti bölmələrdə biz bu
tiplərin JavaScript-də necəliyinə və onlar arasında fərqlərə baxacağıq.

9.3.1. Nüsxə xüsusiyyətləri

Hər bir obyekt nüsxə xüsusiyyətlərinin şəxsi surətlərinə malikdir. Başqa sözlə,
əgər bir sini�in 10 obyekti varsa, nüsxənin hər bir xüsusiyyətinin 10 surəti var.
Məsələn, bizim Rectangle sini�imizdə istənilən Rectangle obyekti düzbucaqlı
dördbucağın enini müəyyən edən width xüsusiyyətinə malikdir. I�ndiki halda
width nüsxə xüsusiyyətidir. Və bir halda ki, hər bir obyekt nüsxənin
xüsusiyyətinin şəxsi surətinə malikdir, onda bu xüsusiyyətlərə ayrı-ayrı
obyektlər vasitəsilə giriş almaq olar. Məsələn, əgər r – özündə Rectangle
sini�inin nüsxəsini təqdim edən obyektdirsə, biz aşağıdakı qaydada onun enini
ala bilərik:

r.width

JavaScript-də susmaya görə obyekt xüsusiyyəti nüsxə xüsusiyyətidir. Ancaq OYP-
yə əsaslansaq, JavaScript-də nüsxə xüsusiyyətləri əslində funksiya-konstruktoru
tərə�indən yaradılan və/və ya inisializasiya olunan xüsusiyyətlərdir.

9.3.2. Nüsxə metodları
Nüsxə metodu bir çox əlamətinə görə nüsxə xüsusiyyətinə bənzəsə də, bu qiymət
deyil, metoddur. (JavaScript-dən fərqli olaraq Java-da funksiya və metodlar
məlumat sayılmır, buna görə də bu fərqi Java-da daha aydın görmək olar.) Nüsxə
metodları obyektə və ya nüsxəyə bağlı çağırılır. Bizim Rectangle sini�imizdə
area() metodu nüsxə metodudur. O Rectangle obyekti ücün aşağıdakı
qaydada çağırılır:

a = r.area()

Nüsxə metodları this açar sözünün köməyilə obyektə və ya nüsxəyə istinad edir.
Nüsxə metodu sini�in istənilən nüsxəsi üçün çağırıla bilər, amma bu o demək
deyil ki, nüsxə hər bir obyekt metodunun şəxsi surətini ehtiva edir. Bunun yerinə
nüsxənin hər metodu sini�in bütün nüsxələriylə birgə istifadə olunur. Biz
JavaScript-də funksiyanın mənimsənməsi yolu ilə sini�in nüsxə metodunu
obyekt-prototipinin konstruktorunda xüsusiyyət kimi müəyyən edirik.

Belə ki, cari konstruktor tərə�indən yaradılmış bütün obyektlər, funksiyaya varis
olunmuş istinaddan birgə istifadə edir və göstərilən metod	 çağırış	 sintaksisinin
köməyilə bu funksiyanı çağıra bilər.

9.3.2.1. Nüsxə metodları və this açar sözü

Əgər siz Java və ya C++ kimi dillərlə tanışsınızsa, onda bu dillərdəki nüsxə
metodları ilə JavaScript-dəki nüsxə metodları arasındakı bir əhəmiyyətli fərqi
yəqin etmisiz. Java və C++-da nüsxə metodlarının görünmə sahəsi this
obyektini daxil edir. Belə ki, məsələn, Java-da area metodu daha sadə realizasiya
oluna bilər:

return width * height;

Ancaq JavaScript-də xüsusiyyət adlarından əvvəl this açar sözünü qoymaq
lazımdır:

return this.width * this.height;

Əgər nüsxənin hər bir xüsusiyyət adından əvvəl this qoymaq narahatdırsa, with
(bölmə	6.18-də təsvir edilən) təlimatından istifadə etmək olar, məsələn:

Rectangle.prototype.area = function (){
with (this){

return width*height;
}

}

9.3.3. Sinif xüsusiyyətləri

Java-da sinif xüsusiyyəti – sini�in nüsxələri ilə deyil, yalnızca özü ilə bağlı olan
xüsusiyyətdir. Yaradılan sinif nüsxələrinin miqdarından asılı olmayaraq, hər bir
sinif xüsusiyyətinin yalnız bir surəti var.

Nüsxə xüsusiyyətləri sinif nüsxəsi üçün əlçatan olduğu kimi, sinif xüsusiyyətləri
də sinif üçün əlçatandır. Number.MAX_VALUE – JavaScript-də sinif xüsusiyyətinə
müraciətin bir nümunəsidir. Burada, MAX_VALUE xüsusiyyəti Number sini�i
vasitəsilə əlçatandır. Çünki hər bir sinif xüsusiyyətinin yalnız bir surəti var və
sinif xüsusiyyətləri əsasən qlobaldır. Ancaq onların üstünlüyü ondan ibarətdir ki,
onlar sini�lə bağlıdır və onların JavaScript ad sahəsindəki mövqeyi, çətin ki, başqa
xüsusiyyətlərlə toqquşacaq. Göründüyü ki, JavaScript-də sini�in xüsusiyyətləri
özünü, konstruktorun-funksiyasının xüsusiyyətinin sadə təyini kimi göstərir.

Məsələn, 1x1-ölçülü bir düzbucaqlı dördbucağın saxlanılması üçün
Rectangle.UNIT sini�inin xüsusiyyəti bu cür yaratmaq olar:

Rectangle.UNIT = new Rectangle(1,1);

Burada Rectangle – funksiya-konstruktorudur, amma bir halda ki, JavaScript-də
funksiyalar obyektlərdən təşkil olunub, onda biz istənilən digər obyekt
xüsusiyyəti kimi funksiyanın xüsusiyyətini yarada bilərik.

9.3.4. Sinif metodları
Sinif metodu – birbaşa sini�lə bağlı olan metoddur; bu metodlar sini�in konkret
nüsxəsi ilə deyil, bilavasitə sinif vasitəsilə çağırılır. Məsələn, Date.parse() metodu
– sinif metodudur. O həmişə Date sini�inin konkret nüsxəsi vasitəsilə deyil, Date
konstruktorunun obyekti vasitəsilə çağırılır. Bir halda ki, sinif metodları
funksiya-konstuktoru vasitəsilə çağırılır, onlar sini�in hər hansı konkret
nüsxəsinə istinad üçün this açar sözündən istifadə edə bilmir, çünki, indiki
halda this-in özü funksiya-konstuktoruna istinad edir. (Adətən sinif
metodlarında this açar sözü heç istifadə olunmur.)
Sinif xüsusiyyətləri kimi, sinif metodları da qlobaldır. Sinif metodları konkret
nüsxəylə işləmir, buna görə də sinif vasitəsilə çağırılan metodlara sadəcə
funksiyalar kimi baxmaq lazımdır. JavaScript-də sinif metodunu müəyyən etmək
üçün, müva�iq funksiyanı konstruktor xüsusiyyətində yaratmaq lazımdır.

9.3.5. Nümunə: Circle sinifi

Nümunə	9.1-də dairə obyektlərinin yaradılması üçün istifadə edilən funksiya-
konstuktorunun və obyekt-prototipinin proqram kodu nümayiş etdirilir. Burada
nüsxə xüsusiyyətləri, nüsxə metodları, sinif xüsusiyyətləri və sinif metodları
nümunələri ilə tanış ola bilərsiniz.
Nümunə	9.1.	Circle	sini�i

// Konstruktordan başlayaq.
function Circle (radius){

// r – nüsxə xüsusiyyətidir, o konstruktor tərəfindən
// təyin edilir və inisializasiya olunur.

this.r = radius;
}
// Circle.PI – sinif, yəni funksiya-konstruktorunun xüsusiyyətidir.

Circle.PI = 3.14159;
// Dairənin sahəsini hesablayan nüsxə metodu.
Circle.prototype.area = function (){ return Circle.PI * this.r * this.r;}
// Sinif metodu – Circle sinifinin iki obyektini qəbul edir və böyük radiuslu
obyekti qaytarır.

Circle.max = function(a, b){ if (a.r > b.r) return a; else return b;}

// Bu sahələrdən hər birindən istifadə nümunələri:
var c = new Circle(1.0);

// Circle sinifinin nüsxəsinin yaradılması
c.r= 2.2; // r nüsxə xüsusiyyətinin təyin edilməsi
var a = c.area(); // area() nüsxə metodunun çağırışı
var = Math.exp(Circle.PI); // Hesablamalarının icra edilməsi üçün sinifin

 // PI xüsusiyyətinə müraciət
var d = new Circle(1.2); // Circle sinifinin başqa nüsxəsinin yaradılması
var bigger = Circle.max(c, d); // Sinifin max() metodunun çağrılması

9.3.6. Nümunə: Kompleks ədədlər
Nümunə	 9.2-də JavaScript-də sinif obyektlərinin təyininin daha bir üsulu
göstərilmişdir. Əvvəlki nümunələrə nisbətə daha formal olan bu nümunədə
şərhləri gözdən keçirtməklə prosesi anlaya bilərsiniz.

Nümunə	9.2.	Kompleks	ədədlər	sini�i

/*
* Complex.js:
* Bu faylda kompleks ədədlərin təqdim etməsi üçün Complex sinifi təyin edilir. *
Xatırladaq ki, kompleks ədəd – həqiqi və xəyali ədədin cəmidir
* və i xəyali ədədinin kvadrat kökü -1-ə bərabərdir.
*/
/*
* Sinifin təyinində ilk addım – sinifin funksiya-konstuktorunun təyinidir.
* Bu konstruktor obyekt nüsxəsinin bütün xüsusiyyətlərini inisializasiya
* etməlidir. Bu "dəyişən vəziyyətləri",bütün müxtəlif sinif nüsxələrini
* ayrılmaz edir.
*/
function Complex(real, imaginary) {
this.x = real; // Həqiqi ədəd
this.y = imaginary; // Xəyali ədəd
}

/*
* Sinifin təyinində ikinci addım – obyekt-protopinin konstruktorunda
* nüsxə metodlarının (və başqa xüsusiyyətlərin) təyinidir.
* Bu obyektdə müəyyən edilmiş istənilən xüsusiyyət bütün sinif nüsxələrinə
* varis olunacaq. Nəzərə alın ki, nüsxə metodları gizli olarar this açar sözü
* ilə işləyir. Bir çox metodlar üçün başqa heç bir arqument tələb olunmur.

*/
// Kompleks ədədin modulu qaytarılması. Bunun üçün kompleks müstəvidə
// koordinat başlanğıcından həmin ədədə qədər olan məsafə təyin edilir.
Complex.prototype.magnitude = function() {
return Math.sqrt(this.x*this.x + this.y*this.y);
};
// Mənfi işarəli kompleks ədədin qaytarılması.
Complex.prototype.negative = function() {
return new Complex(-this.x, -this.y);
};
// Verilmiş bu kompleks ədədin toplanması və cəmin yeni obyekt şəklində
// qaytarılması.
Complex.prototype.add = function(that) {
return new Complex(this.x + that.x, this.y + that.y);
}
// Verilmiş bu kompleks ədədin toplanması və hasilin yeni obyekt şəklində
// qaytarılması.
Complex.prototype.multiply = function(that) {
return new Complex(this.x * that.x - this.y * that.y,
this.x * that.y + this.y * that.x);
}
// Complex obyektini anlaşılan formada səritə dəyişdirmək.
// Complex obyektinin sətir kimi istifadə edildikdə çağırılması.
Complex.prototype.toString = function() {
return "{" + this.x + "," + this.y + "}";
};
// Verilmiş kompleks ədədin bərabərliyinin yoxlanılması.
Complex.prototype.equals = function(that) {
return this.x == that.x && this.y == that.y;
}
// Kompleks ədədin həqiqi hissəsinin qaytarılması.
// Bu funksiya yalnızca Complex obyektinə ədəd qiyməti kimi baxıldıqda
// çağırılır.
Complex.prototype.valueOf = function() { return this.x; }

/*
* Sinifin təyinində üçüncü addım – konstantları və digər lazımlı
* xüsusiyyətləri konstuktor-funksiyasının özünün xüsusiyyətləri
* (obyekt-prototipinin xüsusiyyəti kimi deyil) kimi təyin edən metodların
* realizasiyadır.
* Nəzərə alın ki, sinif metodları this açar sözündən istifadə etmir, onlar
* yalnızca öz arqumentləri ilə işləyirlər.
*/
// İki kompleks ədədi toplayır və alınan cəmi qaytarır.
Complex.add = function (a, b) {
return new Complex(a.x + b.x, a.y + b.y);
};
// İki kompleks ədədi vurur və alınan hasili qaytarır.
Complex.multiply = function(a, b) {
return new Complex(a.x * b.x - a.y * b.y,
a.x * b.y + a.y * b.x);
};

// Qabaqcadan müəyyən edilmiş bir neçə kompleks ədəd.
// Bu sinif xüsusiyyətləri “sabitlər” kimi istifadə olunur.
// (Halbuki, JavaScript-də yalnız oxunmaya əlçatan xüsusiyyət müəyyən etmək
// mümkün deyil.)
Complex.ZERO = new Complex(0,0);
Complex.ONE = new Complex(1,0);
Complex.I = new Complex(0,1);

9.3.7. Şəxsi üzvlər

C++ kimi ənənəvi obyekt yönümlü proqramlaşdırma dilləri kimi, JavaScript-də də
şəxsi elan edilmə (private) mövcuddur, hansı ki, bu cür elan nəticəsində metodlar
yalnızca sini�in daxilində əlçatan olur. Məlumatların	 inkapsulyasiyası
adlandırılan məşhur proqramlaşdırma texnikası şəxsi xüsusiyyətlərin
yaradılması və bu xüsusiyyətlərə girişi xüsusi metodlar vasitəsi yalnız
oxuma/yazma kimi məhdudlaşdırır. JavaScript bu cür davranış qapanmalar (bu
mövzu bölmə	8.8-də müzakirə edilir) vasitəsilə mümkün edir, amma bunu elə
etmək lazımdır ki, giriş metodları sini�in hər bir nüsxəsində saxlanılsın və bu
səbəbdən də obyekt prototipinə varis oluna bilməsin. Aşağıdakı fraqmentdə
bunun qaydası göstərilmişdir. Nümunə, Rectangle düzbucaqlı dördbucaq
obyektinin realizasiyasını ehtiva edir. Burada obyektə yalnız en və hündürlük
əlçatandır və onları yalnız xüsusi metodlara müraciət edərək dəyişdirmək olar:
function ImmutableRectangle(w, h) {

// Bu konstuktor en və hündürlüyünün saxlanıldığı obyekt xüsiyyəti yaratmır,

// O sadəcə obyektə əlçatan olan metodları təyin edir

// Bu metodlar qapanmadan təşkil olunub və en, hündürlük kimi qiymətlər öz görünmə

// sahəsi zəncirində saxlanılır.

this.getWidth = function() { return w; }

this.getHeight = function() { return h; }

}

// Nəzərə alın ki, sinif, obyekt-prototipində adi metodlar təşkil oluna bilər.

ImmutableRectangle.prototype.area = function() {

return this.getWidth() * this.getHeight();

};

Bu metodikanın ilk açılışı (və ya ilk nəşri), Duqlas Krokforda (Douglas Crockford)
aiddir. Bu mövzunu onun müzakirə səhifəsində -
http://www.crockford.com/javascript/private.html tapmaq olar.

9.4. Object sinifinin ümumi metodları

http://az.wikipedia.org/wiki/%C4%B0nkapsulyasiya
http://www.crockford.com/javascript/private.html%20

JavaScript-də yeni sinif təyin edilən zaman, sini�in bəzi metodları qabaqcadan
müəyyən edilir. Bu metodlar növbəti bölmələrdə təfərrüatı ilə təsvir edilir.

9.4.1. toString() metodu

toString() metodunun məğzi ondan ibarətdir ki, sinifdəki hər bir obyekt
özünün xüsusi sətir təqdimatına malik olmalıdır və buna görə də obyektlərin
sətirə dəyişikliyi üçün uyğun toString() metodunu müəyyən etmək lazımdır.
Yəni sini�i müəyyən edərkən, sinif üçün xüsusi toString() metodunu təyin
etmək lazımdır ki, sinif nüsxələri aydın sətirlərə dəyişdirilə bilsin. Obyekt sətir
dəyişikliyi haqqında informasiyanı ehtiva etməlidir, çünki bu kodun gedişatı
zamanı lazım ola bilər. Əgər sətir dəyişikliyi üsulu düzgün seçilmişdirsə, o
həmçinin özlərində faydalı proqramlar ola bilər. Bundan başqa, toString()
metoduyla qaytarılan sətir dəyişikliyindən sonra parse() statik metodunun şəxsi
realizasiyası vasitəsilə əks əməliyyatı yaratmaq olar.
Nümunə 9.2-dəki Complex sini�i artıq toString() metodunun realizasiyasını
ehtiva etdiyinə görə, aşağıdakı fraqmentdə toString() metodunun Circle sini�i
üçün mümkün realizasiyası nümayiş etdirilir:

Circle.prototype.toString = function () {
return "[Mərkəzi ("

+ this.x + ", " + this.y + ") nöqtəsində olan çevrənin radiusu "
+ this.r + " bərabərdir

.]";
}

toString() metodunun bu cür təyinindən sonra Circle obyekti aşağıdakı
formada sətirə dəyişdirilə bilər:

Mərkəzi (0, 0) nöqtəsində olan çevrənin radiusu 1 bərabərdir

9.4.2. valueOf() metodu
valueOf() metodu demək olar ki toString() metoduna bənzəyir, amma bu
meod obyekti sətirdən başqa hər hansı elementar tipdə (adətən ədəd tipində)
olan qiymətə dəyişdirmək tələb olunan zaman çağrılır. Əgər obyekt elementar
tipdə olan qiymət kontekstində istifadə olunursa JavaScript interpretatoru bu
metodu avtomatik çağırır.
Təyininə görə obyektlər elementar qiymət deyil, buna görə də obyektlərin
əksəriyyəti ekvivalent elementar tipə malik deyil. Bunun nəticəsində Object
sini�iylə susmaya görə müəyyən edilən valueOf() metodu hər hansı dəyişiklik
yerinə yetirmir və sadəcə çağrıldığı obyekti qaytarır. Number və Boolean və bu

kimi sini�lərin, aşkar şəkildə elementar ekvivalentliyi mövcuddur, buna görə
onlar valueOf() metodunu yenidən təyin edirlər ki, metod uyğun olan
qiymətləri qaytarsın. Bu səbəbdən Number və Boolean obyektləri bir çox
məqamda özünü elementar tipdə olan qiymətlərə ekvivalent göstərə bilər.
Bəzən ağıllı elementar ekvivalentliliyinə malik olan sinif müəyyən edilir. Belə olan
halda bu sinif üçün valueOf()-un xüsusi metodunu müəyyən etmək zərurəti
yaranır. Əgər biz nümunə 9.2-yə qayıtsaq, görərik ki, Complex sini�i üçün
valueOf() metodu müəyyən edilmişdir. Bu metod sadəcə kompleks ədədin
həqiqi hissəsini qaytarır. Buna görə də Complex obyekti özünü, sanki xəyali
ədəddən təşkil olunmamış, ədəd kontekstində göstərə bilər. Məsələn, aşağıda
fraqmentə baxaq:

var a = new Complex(5,4);
var b = new Complex(2,1);
var c = Complex.sum(a,b); // burada c kompleks ədəddir {7,5}
var d = a + b; // d 7-yə bərabərdir

Bu metoddan istifadə edərkən bir məqamda ehtiyatlı davranmaq lazımdır:
obyektin sətirə dəyişikliyi halında valueOf() metodu bəzən toString()
metodundan yüksək prioritetə malikdir. Buna görə, sinif üçün valueOf()
metodu müəyyən edərkən, sinif obyektinin sətirə dəyişdirilməsi halında,
toString() metodunu sini�in daxilində açıq-aydın çağırışını göstərmək
lazımdır. Nümunəni Complex sini�i ilə davam etdirək:

alert("c = " + c); // valueOf() istifadə edir; "c = 7" ekranlaşdırılır
alert("c = " + c.toString()); // "c = {7,5}" ekranlaşdırılır

9.4.3. Müqayisə metodları

JavaScript-də müqayisə operatorları obyektləri qiymət üzrə deyil, istinad üzrə
müqayisə edir. Belə ki, əgər obyektlərə iki istinad varsa, onların eyni obyektə
istinad etdiklərini aydınlaşdırmaq olur, amma müxtəlif obyektlərin eyni
xüsusiyyətlərlə eyni qiymətlərə malik olmasını aydınlaşdırmaq mümkün olmur.
Obyektlərin ekvivalentliliyini rahatlıqla müəyyən etmək və ya hətta onların
ardıcıllıq nizamını təyin etmək mümkündür. Əgər siz sinif müəyyən edərkən bu
sini�in nüsxələrini müqayisə etmək istəyirsinizsə, sinif daxilində müva�iq
müqayisəni yerinə yetirən metodları müəyyən etmək lazımdır.
Java proqramlaşdırma dilində obyektlərin müqayisəsi metodların köməyi ilə
aparılır və bu yanaşmanı müvəffəqiyyətlə JavaScript-də də istifadə etmək olar.
Sinif nüsxələrini müqayisə etmək üçün equals() adlı nüsxə metodunu
müəyyən etmək lazımdır. Bu metod tək arqumenti qəbul edir və əgər verilən
arqument metodun çağrıldığı obyektə ekvivalentdirsə, true qiyməti qaytarır.

Əlbəttə ki, əvvəlcə, sinif kontekstində "ekvivalent" anlayışını başa düşmək
lazımdır.
Adətən obyektlərin bərabərliyi yoxlamaq üçün iki obyekt nüsxəsinin xüsusiyyət
qiymətləri müqayisə edilir. Nümunə 9.2-dəki Complex sini�i bu cür formada
equals() metoduna malikdir. Bəzən müqayisə əməliyyatları obyektlərin
ardıcıllıq qaydasını aydınlaşdırmaq üçün tətbiq edilir. Belə ki, bəzi sinif
nüsxələrinə kiçik və ya böyük demək olar. Məsələn, Complex sini�indəki
obyektlərin ardıcıllıq qaydası magnitude() metodu vasitəsilə qaytarılan qiymət
əsasında təyin edilir. Eyni zamanda Circle sini�inin obyektləri üçün "kiçikdir" və
"böyükdür" sözlərinin mənasını müəyyən etmək çətindir – bu zaman görəsən
hansı parametri - radius ölçüsünü yaxud X və Y koordinatlarının müqayisəsini
nəzərə almaq lazımdır? Bəlkə, hər üç parametri nəzərə almaq lazımdır?
JavaScript-obyektlərini münasibət operatorlarının köməyilə müqayisə edərkən,
interpretator əvvəlcə obyektlərin valueOf() metodlarını çağıracaq və əgər bu
metodlar elementar tipdə olan qiymətləri qaytarsa, bu qiymətlər müqayisə
ediləcək. Bir halda ki, Complex sini�i ədədin həqiqi hissəsini qaytaran
valueOf() metoduna malikdir, Complex sini�inin nüsxələrini xəyali hissəsi
olmayan adi həqiqi ədədlər kimi müqayisə etmək olar. Bu sizin seçiminizə uyğun
gələ və ya uyğun gəlməyə bilər. Seçiminizə uyğun obyekt nizamını
müəyyənləşdirmək üçün (yenə də, Java proqramlaşdırma dilindəki qəbulları
örnək götürərək) compareTo() adlı metodu reallaşdırmaq lazımdır. compareTo()
metodu tək arqumenti qəbul edir və verilən arqumenti metodun çağrıldığı
obyektlə müqayisə edir. Əgər this obyekti, compareTo() metoduna arqument
qismində ötürülən obyektdən kiçikdirsə, metod sıfırdan kiçik qiymət
qaytarmalıdır. Əgər this obyekti, compareTo() metoduna arqument qismində
ötürülən obyektdən böyükdürsə, metod sıfırdan böyük qiymət qaytarmalıdır. Və
əgər hər iki obyekt bərabərdirsə, metod qiyməti sıfıra bərabər qiymət
qaytarmalıdır. Qaytarılan qiymət haqqında bu razılaşmalar olduqca
əhəmiyyətlidir, çünki münasibət operatorlarının aşağıdakı ifadələrlə
əvəzedilməsi mümkündür:

Münasibət
ifadələri

Əvəz	edildiyi	ifadələr

a < b a.compareTo(b) < 0

a <= b a.compareTo(b) <= 0

a > b a.compareTo(b) > 0

a >= b a.compareTo(b) >= 0

a == b a.compareTo(b) == 0

a != b a.compareTo(b) != 0

Aşağıda, nümunə 9.2-dəki Complex sini�i üçün compareTo() metodunun
mümkün realizasiyalarından biri göstərilmişdir. Burada kompleks ədədlər
modullar üzrə müqayisə edilir:

Complex.prototype.compareTo = function(that) {
// Əgər arqumnt ötürülməsə və ya ötürülən arqument magnitude() metoduna
// əlçatan olmasa istisna yaratmaq lazımdır.magnitude(), необходимо
// Variant kimi, kompleks ədədin ixtiyari digər ədəddən böyük və ya kiçik
// olduğunu göstərmək üçün -1, 1 qiymətlərinin qaytarılması mümkündür.
if (!that || !that.magnitude || typeof that.magnitude != "function")
throw new Error("Complex.compareTo() üçün düzgün olmayan arqument");
// Burada qiymətin kiçikliyini, böyüklüyünü və ya sıfıra bərabərliyini
// qaytaran çıxma əməliyyatı xüsusiyyətindən istifadə olunur.
// compareTo() metodunun bir sıra realizasiyalarında bu üsuldan istifadə
// etmək olar.
return this.magnitude() - that.magnitude();
}

Sinif nüsxələrinin müqayisə etmə səbəblərindən biri, nüsxə massivinin bir neçə
nizamda çeşidləməsi imkanıdır. Array.sort() metodu vacib olmayan arqument
şəklində müqayisə funksiyasını qəbul edə bilər, hansı ki, qaytarılan qiymət
(məna) haqqında həminki razılaşmaları izləməlidir (getməlidir) ki, və
compareTo() metodu. compareTo() metodu mövcudluğu halında təxminən
aşağıdakı qaydada kompleks ədəd massivinin çeşidləməsini təşkil etmək olar:

complexNumbers.sort(new function(a,b) { return a.compareTo(b); });

Çeşidləmə böyük əhəmiyyətə malikdir və buna görə də istənilən sinifdə
compareTo() nüsxə metodunun müəyyən edildiyi yerlərdə statik compare()
metodunun reallaşdırmasının imkanına nəzər yetirmək lazımdır. Birinci yazılışı
aşağıdakı yazılış vasitəsilə daha sadə realizasiya etmək mümkündür:

Complex.compare = function(a,b) { return a.compareTo(b); };

Bu metod olduğu halda massiv çeşidləməsi daha sadə realizasiya oluna bilər:

complexNumbers.sort(Complex.compare);

Nəzərə alın ki, nümunə 9.2-dəki Complex sini�inin təyini zamanı compare() və
compareTo() metodlarının realizasiyaları daxil edilməyib. Məsələ ondadır ki,
sözügedən metodlar nümunədə təyin equals() metoduna uyğun gəlmir.
equals() metodu iddia edir ki, Complex sini�inin hər iki obyekti yalnız o halda
ekvivalentdir ki, onların həqiqi və xəyali hissələri bərabər olsun. Ancaq
compareTo() metodu bərabər modullara malik istənilən iki kompleks ədəd üçün

sıfır qiyməti qaytarır. 1+0i və 0+1i ədədlərə eyni modullara malikdir və bu iki
ədəd compareTo() metodunun çağırışı zamanı bərabər, equals() metodunun
çağırışı zamanı isə bərabər olmayacaq. Beləliklə, əgər siz eyni sinifdə equals()
və compareTo() metodlarını reallaşdırmağa hazırlaşırsınızsa, bu metodları
lazımlı yerlərdə uyğunlaşdırmaq lazımdır. "Bərabərlik" termininin düzgün başa
düşülməməsi alqoritmik uyğunsuzluğa və xətalara gətirib çıxara bilər. Gəlin,
equals() metoduna analoji olan compareTo() metodunun realizasiyasına
baxaq.

// Kompleks ədədlərin müqayisəsi zamanı ilk növbədə həqiqi hissələr müqayisə
// edilir. Əgər bu hissələr bərabərdisə, xəyali hissələr müqayisə edilir.
Complex.prototype.compareTo = function(that) {
var result = this.x - that.x; // Həqiqi ədədlərin çıxma əməliyatının

 // köməyilə müqayisə edilməsi
if (result == 0) // Əgər onlar bərabərdisə...

result = this.y - that.y; // bu zaman xəyali hissələr müqayisə edilir
// İndi nəticə yalnız o halda sıfıra bərabər olacaq ki, həm həqiqi, həm də
// xəyali hissələr bərabər olsun.

return result;
};

9.5. Üst və altsiniflər
Java, C++ və digər sini�lər əsaslı OYP dillərində sərbəst sinif iyerarxiyası
konsepsiyası mövcuddur. Hər bir sinif xüsusiyyətlərinin və metodlarının varis
olunan üstsinifə malik ola bilər. I�stənilən sinif genişləndirilə bilər, yəni onun
davranışını varis olduğu yarımsinifə ötürülür. Gördüyünüz kimi, JavaScript
sini�lər əsasında varisliyin yerinə prototiplər əsasında varisliyi dəstəkləyir.
Bununla belə JavaScript-də analoji sinif iyerarxiyasını həyata keçirmək olar.
JavaScript-də Object sini�i – ən ümumi sinifdir və digər bütün sini�lər və ya
yarımsini�lər onun ixtisaslaşmış versiyasıdır. Həmçinin Object sini�i demək olar
ki bütün inteqrasiya edilmiş sini�lərin üstsini�idir. Bütün sini�lər Object sini�inin
bir neçə baza metoduna varis olur.
Bilirik ki, obyektlər onların obyekt-prototipinin konstruktorundakı
xüsusiyyətlərə varis olur. Bəs, bu xüsusiyyətlər, həmçinin Object sini�indən də
varis ola bilərmi? Xatırladaq ki, obyektin özü obyekt-prototipindən təşkil olunur;
o Object() konstruktorunun köməyilə yaradılır. Bu isə o deməkdir ki, obyekt-
prototipindəki xüsusiyyətlərə Object.prototype-ə varis olur! Buna görə də
Complex sini�inin obyekti Complex.prototype obyektinin xüsusiyyətlərinə
varis olur, hansı ki, o da öz növbəsində Object.prototype-dəki xüsusiyyətlərə
varis olur. Complex obyektində hər hansı xüsusiyyətin axtarışı yerinə yetirilən
zaman, axtarış əvvəlcə obyektin yerinə yetirilir. Əgər xüsusiyyət tapılmasa,

axtarış Complex.prototype obyektində davam edir. Və nəhayət, əgər bu
obyektdə də xüsusiyyət tapılmasa, axtarış Object.prototype obyektində
yerinə yetirilir.
Nəzərə alın ki, bir halda ki, axtarış əvvəlcə Complex obyekt-prototipində aparılır,
Complex.prototype obyektinin xüsusiyyətləri Object.prototype-dəki eyni
adlı istənilən xüsusiyyətləri gizlədir. Belə ki, nümunə 9.2-də göstərilmiş sinifdə
biz Complex.prototype obyektində toString() metodunu müəyyən etdik. Bu
adlı metod həmçinin Object.prototype-ində müəyyən edilmişdir, amma
Complex obyektləri bunu heç vaxt görməyəcək, çünki, toString() ilk olaraq
Complex.prototype-ində təyin olacaq.
Bu fəsildə göstərilən bütün sini�lər, bilavasitə Object sini�inin altsini�lər təşkil
edir. Bu adətən JavaScript-də proqramlaşdırma üçün; adətən sini�lərin daha
mürəkkəb iyerarxiyasının yaradılmasında heç bir ehtiyac yoxdur. Ancaq tələb
olunan, istənilən digər sini�in yarımsini�ini yaratmaq olar. Fərz edək ki, biz
düzbucaqlı dördbucağın koordinatları ilə bağlı xüsusiyyətləri və metodları
Rectangle sini�inə əlavə etmək üçün altsini�ini yaratmaq istəyirik. Bunun üçün
sadəcə əmin olmalıyıq ki, yeni sini�in obyekt-prototipi Rectangle nüsxəsini
ehtiva edir və buna görə də Rectangle.prototype-in bütün xüsusiyyətləri
varis olunur. Nümunə 9.3-də Rectanle sini�inin sadə təyini göstərilir və sonra da
bu təyin yeni PositionedRectangle-sini�inin yaradılması hesabına
genişləndirir.

Nümunə	9.3.	JavaScript-də	üstsini�in	yaradılması

// Sadə düzbucaqlı dörbucaq sinifinin müəyyən edilməsi.
// Bu sinif, sahənin hesablanmasında istifadə olunan en və hündürlük
// xüsusiyyətlərini ehtiva edir.
function Rectangle(w, h) {
this.width = w;
this.height = h;
}
Rectangle.prototype.area = function() { return this.width * this.height; }
// Növbədə yarımsinifin təyinidir
function PositionedRectangle(x, y, w, h) {
// İlk növbədə yeni obyektin width və height xüsusiyyətlərinin
// inisializasiyası üçün üstsinifin konstruktorunu çağırmaq lazımdır.
// Burada call metodu istifadə olunur ki, konstruktor inisializasiya edilən
// obyekt metodu kimi çağırılsın.
// Bu zəncir üzrə konstruktorun çağırışı adlanır.
Rectangle.call(this, w, h);
// Sonra isə, düzbucaqlı dördbucağın sol yuxarı bucağının koordinatları
// saxlanılır.
this.x = x;
this.y = y;
}

// Əgər biz PositionedRectangle() konstruktorunun təyini zamanı yaradılan
// obyekt-prototipindən susmaya görə istifadə etsək, onda Object sinifinin
// üstsinifi yaradılacaq.
// Rectangle sinifinin yarımsinifini yaratmaq üçün şübhəsiz ki, obyekt-
// prototipini yaratmaq lazımdır.
PositionedRectangle.prototype = new Rectangle();
// Biz obyekt-prototipini varislik məqsədilə yaratdıq, amma bizə Rectangle
// sinifinin bütün obyektləri üçün əlçatan width və height xüsusiyyətlərinə
// varis olmaq lazım deyil, buna görə onları prototipdən siləcəyik.
delete PositionedRectangle.prototype.width;
delete PositionedRectangle.prototype.height;
// Bir halda ki, obyekt-prototipi Rectangle() konstruktorunun köməyilə
// yaradılıb, onda belə çıxır ki, constructor xüsusiyyəti bu konstruktora
// istinad edir. Amma bizə lazımdır ki, PositionedRectangle obyektləri digər
// konstruktora istinad etsin, buna görə də aşağıda constructor xüsusiyyətinə
// yeni qiymətin mənimsədilməsi baş verir.
PositionedRectangle.prototype.constructor = PositionedRectangle;
// İndi bizim üstsinifimiz düzgün qurulmuş prototipə malikdir, odur ki, nüsxə //
metodlarının əlavə edilməsinə başlamaq olar.
PositionedRectangle.prototype.contains = function(x,y) {
return (x > this.x && x < this.x + this.width &&
y > this.y && y < this.y + this.height);
}

Nümunə	 9.3-dən göründüyü kimi, JavaScript-də yarımsini�lərin yaradılması
Object sini�indən varis olunmadan daha mürəkkəbdir. Birinci problem üstsinif
konstruktorunun yarımsinif konstruktorundan çağırılması zərurətidir. Bu zaman
həm də üstsini�in konstruktorunu yenidən yaradılmış obyekt metodu kimi
çağırmaq lazım olur. Biraz hiylə işlədərək üstsini�in obyekt-prototipinin
konstruktorunda dəyişiklik etmək olar. Bizə üstsini�in nüsxəsi kimi obyekt-
protipinin yaradılması, sonra bu prototipin constructor xüsusiyyətini
dəyişdirilməsi lazımdır.23 Həmçinin obyekt-prototipdə üstsini�in konstruktoru
tərə�indən yaradılan istənilən xüsusiyyətləri silmək istəyi meydana çıxa bilər. Bu
zaman obyekt-prototipin xüsusiyyətlərinin onun prototipindən varis oluna
bilməsi çox əhəmiyyətlidir.
Bu cür təyinə malik PositionedRectangle sini�ini, proqramlarda təxminən bu
qaydada istifadə etmək olar:

var r = new PositionedRectangle(2,2,2,2);
print(r.contains(3,3)); // Nüsxə metodunun çağırılması
print(r.area()); // Varis olunmuş nüsxə metodunun çağırılması
// Sinifin nüsxəsinin sahələri ilə işləmək:
print(r.x + ", " + r.y + ", " + r.width + ", " + r.height);
// Bizim obyektə 3 sinifinin hər birinin nüsxəsi kimi baxmaq olar.
print(r instanceof PositionedRectangle &&

r instanceof Rectangle &&
r instanceof Object);

9.5.1. Konstruktor dəyişikliyi

I�ndi nümayiş etdirilmiş nümunədə PositionedRectangle() funksiya-
konstuktoru üstsini�in funksiya-konstuktorunu açıq-aydın çağırmalıdır. Bu zəncir
üzrəkonstruktor çağırışı adlanır və altsini�lərin yaradılmasının adi praktikasıdır.
Siz altsini�in obyekt-prototipinə superclass xüsusiyyətini əlavə edib,
konstruktorun sintaksisini sadələşdirə bilərsiniz:

// İstinad üstsinif konstuktorunda saxlanılır.
PositionedRectangle.prototype.superclass = Rectangle;

Ancaq qeyd etmək lazımdır ki, bu üsulu dayaz varislik iyerarxiyası şərti ilə
istifadə etmək olar. Belə ki, əgər B sini�i A sini�inin, C sini�i isə B sini�inin
varisidirsə və hər iki sinifdə (B və C) superclass xüsusiyyətindən müraciət
üsulundan istifadə olunursa, C sini�inin nüsxəsinin yaradılması zamanı
this.superclass istinadı B() konstruktorunda görünəcək və nəticədə B()
konstruktorunun sonsuz rekursiv sirkulyasiyası baş verəcək.

Buna görə də çalışın ki hər zaman, sadə altsinifsinif üsulundan deyil, zəncir üzrə
konstruktor çağırışı üsulundan istifadə edin (Nümunə	 9.3-ə nəzər yetirin).
Xüsusiyyət müəyyən edildikdən sonra, zəncir üzrə konstruktorun çağırışı
sintaksisi əhəmiyyətli dərəcədə sadələşir:

function PositionedRectangle(x, y, w, h) {
this.superclass(w,h);
this.x = x;
this.y = y;

}
Nəzərə alın ki, funksiya-konstuktoru this obyektinin kontekstində çağırılır. Bu
onu bildirir ki, üstsinif konstruktorunun çağırışı üçün obyekt metodu kimi call()
və ya apply() metodundan istifadədən imtina edilir.

9.5.2. Yenidən müəyyən edilmiş metodların çağırışı
Altsinifdə təyin edilən metodun adı üstsinifdəki mövcud metodun adı ilə
eynidirsə, onda altsinif (overrides-ə) bu metodu yenidən təyin edir. Mövcud
sinifdən altsini�in yaradılması zamanı bu situasiya ilə sıx rastlaşılır. Məsələn,
istənilən vaxt sini�in toString() metodunu müəyyən etmək və bununla
Object sini�inin toString() metodunu yenidən təyin etmək olar.
Adətən metodların yenidən təyin edilməsi bu metodların tam dəyişdirilməsi
məqsədilə edilmir. Burada yalnızca onların funksionallığını genişləndirmək
imkanı nəzərdə tutulur. Metod özünün yenidən təyin edilmiş metodunu çağırmaq
imkanına malik olmalıdır. Bu qəbulu konstruktor analogiya üzrə müəyyən

mənada metodların zəncir üzrə çağırışı kimi adlandırmaq olar. Ancaq yenidən
müəyyən edilmiş metodu çağırmaq üstsinif konstruktorunu çağırmaqdan daha
rahatdır.
Aşağıdakı nümunəyə baxaq. Fərz edək ki, Rectangle sini�i toString()
metodunu (hansı ki, bu metod qabaqcadan müəyyən edilmiş metoddur)
aşağıdakı qaydada müəyyən edir:

Rectangle.prototype.toString = function() {
return "[" + this.width + "," + this.height + "]";

}

Əgər siz Rectangle sini�ində toString() metodunu realizasiya etsəniz, onda
xüsusi olaraq, PositionedRectangle sini�ində də bu yenidən təyin etmək
lazımdır ki, altsinif nüsxələri yalnızca en və hündürlük qiymətlərinin deyil, bütün
sinif xüsusiyyətlərinin sətir ilə təqdim edilməsinə malik olsun.
PositionedRectangle – çox sadə sinifdir və onun bütün xüsusiyyətlərini
qaytarmaq üçün toString() metodu kifayətdir. Ancaq nümunəyə görə
koordinat xüsusiyyətlərinin qiymətlərini sözügedən sini�in özündə, width və
height xüsusiyyətləri isə üstsinifə göndərilmiş nümayəndə vasitəsilə emal
ediləcək. Bunu təxminən aşağıdakı qaydada etmək olar:

PositionedRectangle.prototype.toString = function() {
return "(" + this.x + "," + this.y + ") " + // bu sinifin sahəsi
Rectangle.prototype.toString.apply(this); // üstsinifin zəncir üzrə

 // çağırışı
}

toString()-i metodunun üstsinifdə realizasiyası, üstsini�in obyekt-
prototipinin xüsusiyyəti kimi də əlçatandır.
Nəzərə alın ki, biz metodu birbaşa çağıra bilmərik – bunun üçün bizə apply()
metodundan istifadə etmək lazım oldu. Ancaq əgər
PositionedRectangle.prototype-inə superclass xüsusiyyətini əlavə etsək,
onda elə etmək olar ki, kod üstsinif tipindən asılı olmasın:

PositionedRectangle.prototype.toString = function() {
return "(" + this.x + "," + this.y + ") " + // bu sinifin sahəsi
this.superclass.prototype.toString.apply(this);

}
Bir daha nəzərə alın ki, superclass xüsusiyyəti varislik iyerarxiyasında yalnız bir
dəfə istifadə oluna bilər. Əgər bu xüsusiyyət sinifə və onun altsinifə cəlb
ediləcəksə, bu sonsuz rekursiyaya gətirib çıxaracaq.

9.6. Varislik olmadan genişlənmə

Altsini�lərin yaradılması probleminin əvvəlki müzakirəsində, digər sinif
metodlarına varis olan yeni sini�lərin yaradılması sırası təsvir edilir. JavaScript
dili o qədər elastik ki, altsini�lərin yaradılması və varislik mexanizmi olmadan
belə sini�lərin funksional imkanlarının genişlənilməsi mümkündür. Bir halda ki,
JavaScript-də funksiyalar – sadəcə məlumat qiymətidir, onda onları bir sinifdən
başqa bir sinifə asanlıqla ötürmək olar. Nümunə	 9.4-dəki funksiya bir sini�in
bütün metodlarını alır və onların surətlərini başqa sini�in obyekt-prototipində
yaradır.

Nümunə	 9.4.	 Bir	 sinifdəki	 metodun	 digər	 sini�lər	 də	 istifadəsi	 üçün	 metodun
alınması

// Bir sinifdəki metodun digər siniflər də istifadəsi üçün metodun alınması
// Arqumentlər siniflərin funksiya-konstuktoru olmalıdır.
// Object, Array, Date və RegExp kimi inteqrasiya edilmiş siniflər sadalanan
// olmadığı üçün bu funksiyada işləmir
function borrowMethods(borrowFrom, addTo) {

var from = borrowFrom.prototype; // prototip-mənbə
var to = addTo.prototype; // prototip-qəbuledici
for(m in from) { // prototip-mənbədəki bütün xüsusiyyətlərin dövrü

if (typeof from[m] != "function") continue; // Funksiya olmayan
 // xüsusiyyətlərə məhəl
 // qoymamaq

to[m] = from[m]; // Metodu almaq
}

}

Bir çox metodlar sini�lə o qədər sıx əlaqəlidir ki, onların digər sini�lərdə istifadəsi
mənasızdır. Ancaq elə metodlar var ki, onlar kifayət qədər universaldır və
istənilən sinifdə işləyə bilər. Nümunə 9.5-də təyin edilən iki sini�in ayrılıqda heç
bir faydası yoxdur, amma bu sini�lərdə realizasiya olunan metodları, başqa
sini�lər üçün tətbiq bilər. Xüsusi olaraq alınma məqsədi ilə hazırlanan belə
sini�lər sinif-qarışığı və ya sadəcə qarışıq sini�lər adlanır.

Nümunə 9.5. Alınma üçün nəzərdə tutulmuş universal metodlar ehtiva edən sinif
qarışığı

// Öz-özlüyündə bu sinif o qədər də yaxşı deyil. Ancaq bu sinif özündə
// universal toString() metodunu ehtiva edir ki, bu metod digər siniflərdə də
istifadə oluna bilər.
function GenericToString() {}
GenericToString.prototype.toString = function() {

var props = [];
for(var name in this) {

if (!this.hasOwnProperty(name)) continue;
var value = this[name];
var s = name + ":"
switch(typeof value) {

case 'function':
s += "function";
break;

case 'object':
if (value instanceof Array) s += "array"
else s += value.toString();
break;

default:
s += String(value);
break;

}
props.push(s);

}
return "{" + props.join(", ") + "}";

}
// Növbəti sinifdə sadəcə obyektləri müqayisə edən equals() metodu müəyyən
// edilir.
function GenericEquals() {}
GenericEquals.prototype.equals = function(that) {

if (this == that) return true;
// obyektlər o halda bərabərdir ki, this və that obyektləri eyni
// xüsusiyyətləri ehtiva etsin və bu xüsusiyyətlərdən başqa xüsusiyyətə
// malik olmasın.
// Nəzərə alın ki, burada dərin müqayisəyə lüzum yoxdur.
// Qiymətlər sadəcə bir-birinə === (eynilik) olmalıdır. Buradan belə
// nəticə çıxır ki, əgər başqa obyektlərə istinad edən xüsusiyyətlər
// varsa, bu xüsusiyyətlər equals() metodunun true qaytardığı obyektlərə
// deyil, mövcud ən yuxarı obyektə istinad etməlidir.

var propsInThat = 0;
for(var name in that) {

propsInThat++;
if (this[name] !== that[name]) return false;

}
// İndi əmin olmaq lazımdır ki, this obyekti əlavə xüsusiyyətlərə malik
// deyil.

var propsInThis = 0;
for(name in this) propsInThis++;
// Əgər this obyekti əlavə xüsusiyyətlərə malikdirsə, onda, obyektlər
// bərabər deyil.
if (propsInThis != propsInThat) return false;
// İki obyekt bərabər götürülərkən...
return true;

}

Deməli belə, sinif-qarışığından toString() və equals() metodunu alan sadə
Rectangle sini�i aşağıdakı formada olur:

// Sadə Rectangle sinifi
function Rectangle(x, y, w, h) {

this.x = x;
this.y = y;
this.width = w;
this.height = h;

}
Rectangle.prototype.area = function() { return this.width * this.height; }
// Bir neçə metodun alınması
borrowMethods(GenericEquals, Rectangle);
borrowMethods(GenericToString, Rectangle);

Burada təqdim edilmiş sinif-qarışığından heç biri şəxsi konstruktora malik deyil,
ancaq bu o demək deyil ki, konstruktorları almaq olmaz. Aşağıdakı fraqmentdə
ColoredRectangle adlı yeni sinif təyini edilir. O Rectangle sini�inin
funksionallığına varis olur və Colored sinif-qarışığından konstruktor və metod
alır:

// Bu sinif-qarışığı konstruktordan asılı olan metodu ehtiva edir. Onların hər
ikisi, konstruktor və metod alınmış olmalıdır.
function Colored(c) { this.color = c; }
Colored.prototype.getColor = function() { return this.color; }
// Yeni sinifin konstruktorunun müəyyən edilməsi
function ColoredRectangle(x, y, w, h, c) {

this.superclass(x, y, w, h); // Üstsinif konstruktorunun çağırışı və
Colored.call(this, c); // Colored konstruktorunun alınması

}
// Rectangle sinifindəki metodlara obyekt-prototipinin varisliyinin
// tənzimlənməsi
ColoredRectangle.prototype = new Rectangle();
ColoredRectangle.prototype.constructor = ColoredRectangle;
ColoredRectangle.prototype.superclass = Rectangle;
// Colored sinifindəki metodların yeni sinifə nəqli
borrowMethods(Colored, ColoredRectangle);

ColoredRectangle sini�i Rectangle sini�ini genişləndirir (və onun
metodlarına varis olur), həmçinin Colored sini�inin metodlarını alır.
 Rectangle sini�inin özü isə Object sini�inə varis olur və GenericEquals və
GenericToString sini�lərinin metodlarını alır. Hərçənd belə məqamda bu cür
analogiyalar yersizdir, amma bunu bir növ “çoxsaylı	varislik” adlandırmaq olar.
Çünki ColoredRectangle sini�i Colored sini�i metodlarını alır,
ColoredRectangle sini�inin nüsxələrinə eyni zamanda Colored sini�inin
nüsxələri kimi baxmaq olar. instanceof operatoru bunu müəyyən edə bilmir,

amma bölmə 9.7.3-də yaratdığımız universal metod vasitəsilə göstərilmiş
sinifdəki obyekt metodunun varis olunduğunu və kənardan alındığını müəyyən
etmək olur.

9.7. Obyek�n �pinin təyini
JavaScript	 dili – qismən tipləşdirilmiş dildir və bundan dolayı JavaScript
obyektləri qismən tipləşdirilmişdir. Bununla belə JavaScript-də bir neçə qəbul
mövcuddur ki, ixtiyari qiymətin tipinin təyininə xidmət edə bilər.
Əlbəttə, ən yayılmış qəbul typeof operatorundan (bölmə	5.10.2) istifadədir. I�lk
növbədə typeof obyektləri və elementar tipləri ayırmağa imkan verir, ancaq bu
operator bəzi qəribəliklərə malikdir. Birincisi, typeof null ifadəsində nəticə
olaraq "object" sətirini verir, halbuki undefined ifadəsində "undefined"
sətirini qaytarır. Bundan başqa istənilən massiv tipini "object" sətiri kimi qeyd
edir, bu anlaşılandır ki, bütün massivlər obyektlər təşkil olunub, ancaq ixtiyari
funksiya üçün bu operator "function" sətiri qaytarır, hərçənd ki, funksiyalar da
faktiki olaraq obyektdir.

9.7.1. instanceof operatoru və konstruktor

Hər hansı qiymətin elementar qiymət və funksiyadan deyil, obyektdən ehtiva
olunduğu aydınlaşdırdıqdan sonra, bu qiyməti instanceof operatoruna verərək
onun mahiyyətli ətra�lı onun öyrənmək olar. Məsələn, x massivdirsə, aşağıdakı
true qaytaracaq:

x instanceof Array

instanceof operatorundan solda yoxlanan qiymət, sağda isə obyektlərin sini�ini
müəyyən edən funksiya-konstruktorunun adı yerləşir. Nəzərə alın ki, şəxsi-
obyekt sini�in və onun bütün üstsini�lərinin nüsxəsi kimi qiymətləndirilir.
Beləliklə, istənilən o obyekti üçün o instanceof Object ifadəsi həmişə true
qiyməti qaytaracaq. Maraqlıdır ki, instanceof operatoru funksiyalarla da işləyə
bilir. Belə ki, aşağıda göstərilən bütün ifadələr true qiymətini qaytarır:

typeof f == "function"
f instanceof Function
f instanceof Object

Ehtiyac olduğu halda hər hansı sini�in bir altsini�in deyil, müəyyən sini�in nüsxəsi
oluduğuna əmin olmaq olar – bunun üçün constructor xassə mənasını yoxlamaq

kifayətdir:

var d = new Date(); // Date obyekti; Date – Object sinifinin altsinifi
var isobject = d instanceof Object; // true qaytarır
var realobject = d.constructor==Object; // false qaytarır

9.7.2. Object.toString() metodunun köməyilə obyek�n
�pinin təyini

instanceof operatorunun çatışmazlığı və constructor xüsusiyyətləri yalnız sizə
məlum olan sini�ləri yoxlamağa imkan verir, amma onlar məsələn, hazırlanma
prosesində naməlum obyektlərin tədqiqatı zamanı heç bir faydalı məlumata verə
bilmir. Belə vəziyyətdə Object.toString() metodu köməyinizə gələ bilər.
7-ci fəsildə deyildiyi kimi, Object sini�i toString() metodunu susmaya görə
ehtiva edir. Şəxsi metod müəyyən etməyən istənilən sinif, susmaya görə bu
metoda varis olur. Susmaya görə toString() metodun maraqlı xüsusiyyəti
mövcuddur ki, sözügedən metod inteqrasiya edilmiş obyektlərin tipi haqqında
bir neçə daxili informasiyanı ekranlaşdırır. ECMAScript spesi�ikasiyası tələb edir
ki, toString() metodu susmaya görə həmişə məlumatı sətir formatında
qaytarsın:

[object class]

Burada class – obyektin daxili tipidir ki, adətən bu obyektin funksiya-
konstuktorunun adına uyğun olur. Məsələn, class, massivlər üçün – "Array",
funksiyalar üçün – "Function", tarix/vaxt obyektləri üçün – "Date", inteqrasiya
edilmiş Math sini�i üçün "Math" və Error ailəsinin bütün sini�ləri üçün – "Error"
sətiri olacaq.

JavaScript reallaşdırmasıyla müəyyən edilən JavaScript-in kliyent dilinin
obyektlərində və digər ixtiyari obyektlərdə class sətirində realizasiyasiyaya
müva�iq sətir (məsələn, "Window", "Document" və ya "Form"). Ancaq daha əvvəl
nümayiş etdirilən Circle və Complex kimi istifadəçi tərə�indən müəyyən edilən
obyektlərin tipləri üçün class sətirində həmişə "Object" sətiri qaytarılır. Yəni
toString() metodu obyektlərin yalnız əvvəlcədən qurulmuş tipləri müəyyən
edə bilir.
Bir halda ki, sini�lərin əksəriyyətində susmaya görə toString() metodu
yenidən təyin edilir, onda bu metodu bilavasitə obyektdən çağırmaqla obyektin
tipini müəyyən etməyi gözləməyin. Bunun yerinə susmaya görə olan

Object.prototype funksiya müraciət etmək və tələb olunan obyekti apply()
metodu ötürərək onun hansı tipdə olduğunu öyrənmək olar:

Object.prototype.toString.apply(o); // Hər zaman susmaya görə toString()
 // metodunun çağırılıması

Bu qəbuldan nümunə	 9.6-da tipin müəyyənləşdirilməsi üzrə genişləndirilmiş
imkanlara malik olan funksiyanın təyinində istifadə olunur. Əvvəl də qeyd edildiyi
kimi, toString() metodu istifadəçi sini�ləriylə işləmir, belə olan halda aşağıda
göstərilmiş funksiya classname xüsusiyyətinin qiymətini yoxlayır və xüsusiyyət
müəyyən edildiyi halda onun qiymətini qaytarır.

function getType(x) {
// Əgər x qiyməti null-a bərabərdisə, "null" sətiri qaytarılır.
if (x == null) return "null";

// typeof operatorunun köməyilə tipin müəyyən edilməsini yoxlamaq.
var t = typeof x;

// Əgər anlaşılmayan nəticə əldə olunsa, t-nin özünü qaytarmaq
if (t != "object") return t;

// Əks təqdirdə, x – obyektdir. Susmaya görə toString() metodunu susmaya
// çağırılması və sinfin adının sətiraltı ekranlaşdırılması.
var c = Object.prototype.toString.apply(x); // "[object class]" formatında
c = c.substring(8, c.length-1); // "[object" və "]" silinməsi

// Əgər sinifin adı Object deyilsə, c-nin özünü qaytarmaq.
if (c != "Object") return c;

// Əgər "Object" tipi alınarsa, x-in həqiqətən bu sinifə aid olduğunun
// yoxlanılması
if (x.constructor == Object) return c; // Həqiqi "Object" tipi

// İstifadəçi tərəfindən yaradılmış sinifləri üçün obyekt-prototipindən
 // varis olan classname xüsusiyyətinin sətir qiymətinin çıxardılması.
if ("classname" in x.constructor.prototype && // varis olunmuş sinifin adı

typeof x.constructor.prototype.classname == "string") // bu sətirdir
return x.constructor.prototype.classname;

// Əgər tip müəyyən etmək mümkün deyilsə, aşağıdakı sətir qaytarılır.
return "<unknown type>";

}

9.7.3. Kobud �p təyini
Belə bir köhnə �ikir mövcuddur: "Əgər hər hansı canlı ördək kimi yeriyirsə və
ördək kimi səs çıxarırsa, deməli bu canlı ördəkdir!". Bu aforizmi JavaScript dilinə

bu aforizmi uyğunlaşdırmaq kifayət qədər çətindir, ancaq gəlin yoxlayaq: "Əgər
obyektdə ixtiyari sini�in bütün metodları reallaşdırılmışsa, deməli, bu obyekt
sini�in nüsxəsidir". JavaScript kimi zəif tipləşdirilmiş elastik proqramlaşdırma
dillərində, bu "kobud tiq təyini" adlanır: əgər obyekt X sini�inin bütün
xüsusiyyətlərinə malikdirsə, onda bu obyektə X sini�inin nüsxəsi kimi baxmaq
olar (hətta əgər bu obyekt X() funksiya-konstuktoru ilə yaradılmasa belə).24

Kobud tip təyininin, metodlarını başqa sini�lərdən "alan" sini�lərdə istifadəsi
xüsusilə rahatdır. Fəsilin əvvəlində təyin edilən GenericEquals adlı sinifdə
equals() metodunu alan Rectangle sini�i nümayiş etdirilmişdir. Rectangle
sini�inin istənilən nüsxəsinə GenericEquals sini�inin nüsxəsi kimi baxmaq olar.
instanceof operatoru bu faktı müəyyən edə bilmir, amma bizim yaratdığımız bu
xüsusi metod (Nümunə	9.7) bu faktı müəyyən edə bilir.

Nümunə	9.7.	Verilmiş	sinif	metodlarının	obyektlə	alınması	faktının	yoxlaması

// Əgər c.prototype metodlarının hər biri o obyektiylə alınarsa true qiymətini
// qaytarır.Burada o – obyekt deyil, funksiyadır. o obyektinin özünün yerinə
// onun prototipi yoxlanılır.
// Nəzərə alın ki, bu funksiya üçün metodların təkrar realizasiyası deyil,
// kopiyalanması lazımdır. Əgər sinif, metodu aldısa və bundan sonra metodu
// yenidən təyin etdisə, bu funksiya false qiymətini qaytaracaq.
function borrows(o, c) {

// Əgər o obyekti artıq c sinifinin nüsxəsidirsə, true qiymətini qaytarmaq
// olar

if (o instanceof c) return true;

// İnteqrasiya edilmiş sinif metodlarının alınması faktının yoxlamasını
// tam olaraq yerinə yetirmək mümkün deyil, çünki, inteqrasiya edilmiş
// tiplərin metodları sadalana bilmir. Belə olan halda istisana yaradaraq
// undefined qiymətini qaytarmaq olar. undefined qiyməti bir çox məqamda
// özünü false qiyməti kimi aparır, amma əgər undefuned çağıran proqrama
// lazımdısa zaman false-dən fərqlənə bilər.

if (c == Array || c == Boolean || c == Date || c == Error ||
 c == Function || c == Number || c == RegExp || c == String)

return undefined;
if (typeof o == "function") o = o.prototype;
var proto = c.prototype;
for(var p in proto) {

// Funksiya olmayan xüsusiyyətlərə nəzərə almamaq
if (typeof proto[p] != "function") continue;
if (o[p] != proto[p]) return false;

}
return true;

}

Nümunə 9.7-dəki borrows() metodu kifayət qədər məhduddur: sözügedən
metod, yalnız o obyekti c sini�i ilə müəyyən edilən metodların dəqiq surətlərinə
malik olan zaman, true qiymətinə qaytarır. Reallıqda isə, kobud tip təyini daha
ustalıqla işlənməlidir:

объект o должен рассматриваться как экземпляр класса c, если содержит
методы, напоминающие методы класса c. В JavaScript «напоминающие»
означает «имеющие те же самые имена» и (возможно) «объявленные с тем
же количеством аргументов». В примере 9.8 демонстрируется метод,
реализующии� такую проверку.

Əgər o obyekti c sini�inin metodlarına xatırladan metodları ehtiva edirsə, onda o
obyektinə c sini�inin nüsxəsi kimi baxılmalıdır. JavaScript-də "xatırladan"
dedikdə, "eyni adlara malik" və (ola bilər ki,) "eyni arqument miqdarına malik"
başa düşülür. Nümunə 9.8-də bu cür yoxlamanı reallaşdıran metod nümayiş
etdirilir.

Nümunə	9.8.	Eyni	adlı	metodların	mövcudluğunun	yoxlanılması

// Əgər o obyekti c.prototype sinifi ilə eyni adlara və eyni arqument
// miqdarına malik metodlar ehtiva edirsə true qiməti qaytarılır. Əks təqdirdə
// false qiyməti qaytarılır. Əgər c sinifi sadalana bilməyən inteqrasiya
// edilmiş tipə aid olan metod ehtiva edirsə, istisna yaradılır.
function provides(o, c) {

// Əgər o obyekti artıq c sinifinin nüsxəsidirsə, onda o obyekti c sinifini
// “xatırladır”.
if (o instanceof c) return true;
// Əgər obyektin yerinə obyekt konstruktoru ötürülərsə, obyekt-prototipdən
// istifadə etmək
if (typeof o == "function") o = o.prototype;

// İnteqrasiya edilmiş siniflər metodları sadalana bilmir, buna görə də
// undefined qiymətini qaytarılır. Əgər undefined qiyməti qaytarılmasa,
// istənilən obyekt hər hansı inteqrasiya edilmiş tipi xatırladacaq.
if (c == Array || c == Boolean || c == Date || c == Error ||

 c == Function || c == Number || c == RegExp || c == String)
return undefined;

var proto = c.prototype;
for(var p in proto) { // c.prototype xüsusiyyətlərinin dövrü

// Funksiya olmayan xüsusiyyətlərə nəzərə almamaq
if (typeof proto[p] != "function") continue;
// Əgər o obyekti eyni adlı xüsusiyyət ehtiva etmirsə, false qiyməti
// qaytarmaq
if (!(p in o)) return false;
// Əgər bu funksiya deyil, xüsusiyyətdirsə, false qiyməti qaytarmaq
if (typeof o[p] != "function") return false;
// Əgər hər iki funksiya müxtəlif miqdarda arqumentlərlə elan
// edilmişdirsə, false qiymətini qaytarmaq.

if (o[p].length != proto[p].length) return false;
}
// Bütün hallar yoxlanıldıqdan sonra true qiymətini qaytarmaq olar.
return true;

}

Kobud tip təyininin və provide() metodundan istifadə nümunəsi kimi	 bölmə
9.4.3-də təsvir edilmiş compareTo() metoduna baxaq. Bir qayda olaraq,
compareTo() metodu alınma üçün nəzərdə tutulmamışdır, amma bəzən
compareTo() metodunun köməyilə obyektlərin müqayisə imkanına malik
olmasını yoxlamaq tələb olunur. Bu minvalla Comparable sini�ini müəyyən
edəcəyik:

function Comparable() {}
Comparable.prototype.compareTo = function(that) {

throw "Comparable.compareTo() – abstrakt metoddur. Çağırıla bilmir!";
}

Comparable sini�i abstrakt sinifdir: onun metodları çağırış üçün nəzərdə
tutulmamışdır, o sadəcə tətbiq interfeysini müəyyən edir. Ancaq bu sini�in təyini
olduğu halda iki obyektin müqayisəsi mümkünlüyünü yoxlamaq olar:

// o və p obyektlərinin müqayisəsinin mümkünlüyünü yoxlamaq
// Onlar bir tipə aid olmalıdır və compareTo() metoduna malik olmalıdır
if (o.constructor == p.constructor && provides(o, Comparable)) {

var order = o.compareTo(p);
}

Nəzərə alın ki, bu bölmədə təqdim edilmiş, hər iki funksiyaya - borrows() və
provides() funksiyasına JavaScript-in inteqrasiya edilmiş tiplərindən birinə aid
olan obyekt (məs., Array) ötürülürsə funksiya undefined qiymətini qaytarır.
Bunun səbəbi odur ki, inteqrasiya edilmiş tiplərin obyekt-prototiplərinin
xüsusiyyətləri for/in dövründə sadalana bilmir.

9.8. Nümunə: defineClass() köməkçi metodu

Bu fəsil, konstruktorlar, prototiplər, yarımsini�lər, metodların alınması və
verilməsi haqqında müzakirə edilmiş mövzuları özündə təcəssüm etdirən
de�ineClass()-ın köməkçi metodunun təyin edilməsi ilə bitir. Metodun
realizasıyası nümunə 9.10-da göstərilmişdir.

Nümunə	9.10.	Sini�lərin	təyini	üçün	köməkçi	funksiya

/**
* defineClass()–JavaScript-siniflərinin təyin edilməsi üçün köməkçi funksiya.
*
* Bu funksiya tək arqument şəklində obyekti almağa gözləyir.
 * Funksiya bu obyektdəki məlumatlara əsasən yeni JavaScript-sinifi müəyyən
* edir və yeni sinifin funksiya-konstruktorunu qaytarır. Bu funksiya
* siniflərin təyiniylə bağlı məsələləri həll edir: obyekt-prototipdə varislik
* düzgün qurur, başqa siniflərdən metodları köçürür və s.
*
* Arqument kimi verilən aşağıda tələblərin bəzilərinə cavab verməlidir:
*
* name: Müəyyən edilən sinifin adı.
* Əgər ad müəyyən edilərsə, bu ad obyekt-prototipin classname
* xüsusiyyətində saxlanacaq.
*
*
* extend: Varis olunan sinifin konstruktoru. Yoxluq halında Object()-
* konstruktorundan istifadə ediləcək. Bu qiymət obyekt-
* prototipin superclass xüsusiyyətində saxlanacaq.
*
*
* construct: Sinifin funksiya-konstruktoru. Yoxluq halında yeni boş
* funksiyadan istifadə ediləcək. Bu qiymət funksiyanın
* qaytarılan qiyməti olacaqvə bu obyekt-prototipinin
* constructor-u xüsusiyyətində saxlanılacaq.
*
* methods: Sinif nüsxəsinin metodlarını (və müxtəlif nüsxələrlə birgə
* istifadə edilən başqa xüsusiyyətlərləri) müəyyən edən obyekt.
* Bu obyektin xüsusiyyətləri sinifin obyekt-prototipinə
* kopiyalanacaq. Yoxluq halında boş obyektdən istifadə
* ediləcək.
*
*
* "classname" , "superclass" və "constructor" xüsusiyyət
* adları ehtiyat saxlanılmışdır və bu obyektdə istifadə
* olunmamalıdır.
*
* statics: Statik metodları (və digər statik
* xüsusiyyətləri) müəyyən edən sinif. Bu obyektin
* xüsusiyyətləri funksiya-konstruktorun xüsusiyyəti
* olacaq. Yoxluq halında boş obyektdən istifadə
* ediləcək.
*
* borrows: Funksiya-konstruktor və ya funksiya-konstruktorların
* massivi.
* Verilmiş siniflərdən hər birinin nüsxə
* metodları bu yeni sinifin obyekt-prototipinə
* kopiyalanacaq, beləliklə yeni sinif verilmiş
* siniflərin hər biri metodlarını alacaq. Konstruktorlar
* sıra ilə emal edilir, bunun nəticəsində massivin
* sonunda duran sinif metodları, yuxarıda duran sinif

* metodlarını yenidən təyin edə bilər. Nəzərə alın ki,
* xüsusiyyətlər və obyektdən yuxarıda göstərilən
* metodlar kopiyalana qədər alınan metodlar obyekt-
* prototipində saxlanılır.
* Buna görə də, bu obyektlərlə müəyyən edilən metodlar
* alınan metodları yenidən təyin edə bilər. Bu
* xüsusiyyətin yoxluğunda metodların alınması baş
* vermir.
*
* provides: Funksiya-konstruktor və ya funksiya-

konstruktorlarının
* massivi.
* Obyekt-prototip inisializasiya edildikdən sonra, bu
* funksiya prototiplə göstərilən sinif nüsxələri
* arasında eyni adlı və eyni arqument miqdarlı
* metodların mövcudluğunu yoxlayır. Burada heç bir metod

 * kopiyalanmayacaq,sadəcə əmin olmaq lazımdır ki, bu
 * sinif göstərilən siniflə təmin edilən funksionallığa
 * "imkan verir". Əgər yoxlama uğursuz olssa, bu metod
 * istisna yaradacaq. Əks təqdirdə yeni sinifin istənilən
 * nüsxəsinə göstərilən tiplərin nüsxəsi kimi baxmaq
 * olar (kobud tip təyini metodikasından istifadə
 * etməklə). Əgər bu xüsusiyyət müəyyən edilməməsə,
 * yoxlama yerinə yetirilməyəcək.

**/
function defineClass(data) {

// Obyekt-arqumentindən qiymət sahələri çıxartmaq.
// Susmaya görə qiymətlər təyin etmək.
var classname = data.name;
var superclass = data.extend || Object;
var constructor = data.construct || function() {};
var methods = data.methods || {};
var statics = data.statics || {};
var borrows;
var provides;

// Alınma tək konstruktordan deyil, həm də konstruktorlar massivindən
// həyata keçir.
if (!data.borrows) borrows = [];
else if (data.borrows instanceof Array) borrows = data.borrows;
else borrows = [data.borrows];

// Eyni verilən xüsusiyyətlər üçün.
if (!data.provides) provides = [];
else if (data.provides instanceof Array) provides = data.provides;
else provides = [data.provides];

// Sinif prototipi olan obyektin yaradılması.
var proto = new superclass();

// Varis olunmamış bütün xüsusiyyətləri yeni obyekt-prototipindən silmək.
for(var p in proto)

 if (proto.hasOwnProperty(p)) delete proto[p];
// Sinif-qarışıqlarından metodları alaraq, prototipə kopiyalamaq.
for(var i = 0; i < borrows.length; i++) {

var c = data.borrows[i];
borrows[i] = c;
// c obyektinin prototipindəki metodları bizim prototipimizə
// kopiyalamaq
for(var p in c.prototype) {

if (typeof c.prototype[p] != "function") continue;
proto[p] = c.prototype[p];

}
}

// Obyekt-prototipinəə nüsxə metodlarını kopiyalamaq
// Bu əməliyyat sinif-qarışıqlarından kopiyalanmış metodları yenidən təyin
// edə bilər
for(var p in methods) proto[p] = methods[p];

// "constructor", "superclass" və "classname" kim ehtiyata saxlanılmış
// xüsusiyyət qiymətlərini prototipdə yerləşdirmək
proto.constructor = constructor;
proto.superclass = superclass;

// classname xüsusiyyətini yalnız verildiyi zaman yerləşdirmək.
if (classname) proto.classname = classname;

// Əmin olmaq ki, prototip güman edilən bütün metodları verir.
for(var i = 0; i < provides.length; i++) { // hər bir sinifdə

var c = provides[i];
for(var p in c.prototype) { // hər bir xüsusiyyətdə

if (typeof c.prototype[p] != "function") continue; // ancaq metodlarda
if (p == "constructor" || p == "superclass") continue;
// Eyni adla və eyni miqdarlı metodların mövcudluğunu yoxlamaq.
// Əgər belə metod varsa, dövrü davam etmək.
if (p in proto &&

typeof proto[p] == "function" &&
proto[p].length == c.prototype[p].length) continue;

// Əks təqdirdə istisna yaratmaq
throw new Error("Класс " + classname + " не предоставляет метод "+

c.classname + "." + p);
}

}

// Funksiya-konstruktorla obyekt-prototipini əlaqələndirmək.
constructor.prototype = proto;
// Statik xüsusiyyətləri konstruktora kopyalamaq
for(var p in statics) constructor[p] = data.statics[p];
// Və axırda funksiya-konstruktorunu qaytarmaq
return constructor;

}

Nümunə	9.11-də de�ineClass() metodundan istifadə nümunəsi göstərilmişdir.

Nümunə	9.11.	de�ineClass()	metodundan	istifadə

// Comparable interfeysinə "malik" sinifləri müəyyən edə bilən, abstrakt
// metodlar ehtiva edən Comparable sinifi.
var Comparable = defineClass({

name: "Comparable",
methods: { compareTo: function(that) { throw "abstract"; } }

});
// Alınma üçün nəzərdə tutulmuş universal equals() metoduna malik sinif-
// qarışığı
var GenericEquals = defineClass({

name: "GenericEquals",
methods: {

equals: function(that) {
if (this == that) return true;
var propsInThat = 0;
for(var name in that) {

propsInThat++;
if (this[name] !== that[name]) return false;

}
// Əmin olmaq lazımdır ki, this obyekti əlavə xüsusiyyətlərəə
// malik deyil
var propsInThis = 0;
for(name in this) propsInThis++;
// Əgər əlavə xüsusiyyətlər varsa, obyektlər bərabər olmayacaq
if (propsInThis != propsInThat) return false;
// Görünür ki, iki obyekt ekvivalentdir.
return true;

}
}

});
// Comparable interfeysinə malik çox sadə Rectangle sinifi
var Rectangle = defineClass({
name: "Rectangle",
construct: function(w,h) { this.width = w; this.height = h; },
methods: {
area: function() { return this.width * this.height; },
compareTo: function(that) { return this.area() that.area(); }
},
provides: Comparable
});

// Öz üstsinifinin konstruktorunu zəncir üzrə çağıran, Rectangle sinifinin
// altsinifi, üstsinifin metodlarına varis olur, öz nüxsə metodlarını və
// statik metodları müəyyən edir və equals() metodunu alır.
var PositionedRectangle = defineClass({

name: "PositionedRectangle",
extend: Rectangle,
construct: function(x,y,w,h) {

this.superclass(w,h); // вызов по цепочке
this.x = x;
this.y = y;

},
methods: {

isInside: function(x,y) {
return x > this.x && x < this.x+this.width &&
y > this.y && y < this.y+this.height;

}
},
statics: {

comparator: function(a,b) { return a.compareTo(b); }
},
borrows: [GenericEquals]

});

Digər nəşrlərimiz:

obin Niksonun “Learning PHP, JavaScript and MySQL” kitabı əsasında
hazırlanmışdır.

PHP

Notes
[←1]

ECMAScript v3 həmçinin $ işarəsini də dəstəkləyir, lakin JavaScript 1.1 versiyasına qədər olan
versiyalarda, bu

[←2]
Bu format double �pində olan ədədlər formasında Java- proqramçılara tanış olmalıdır. double �pi həmçinin
C və C++-ın bütün müasir reallaşdırmalarında is�fadə edilir.

[←3]
ECMAScript standartı iddia edir ki, əgər sətir "0" simvolundan başlanırsa ("0x" və ya "0x" istisnadır),
parseInt() funksiyası sətiri səkkizlik və onluq say sistemlərində olan ədəd kimi göstərə bilər. Çünki,
funksiyanın davranışı aydın müəyyən edilməmişdir. "0 ilə" başlanan sətirlərin interpretasiyası üçün
parseInt() funksiyasından istifadədən çəkinmək və ya hesablamalarda sistemin əsasını açıq-aydın
göstərmək lazımdır.

[←4]
 C-də işləmiş proqramçıların nəzərinə çatdırırıq ki, C dilindən fərqli olaraq JavaScript-də məntiqi
qiymətlər üçün ayrı məntiqi məlumat tipi mövcuddur ki, bu məlumat tipi həqiqi ədədlərlə ifadə edilə
bilir. Java-proqramçılarının nəzərinə çatdırmaq istəyirik ki, baxmayaraq JavaScript məntiqi məlumat tipi
mövcuddur, lakin bu tip Java-dakı boolean tipi qədər “təmiz” işləmir - JavaScript-də məntiqi qiymətlər
başqa məlumat tiplərində asan dəyişdiriləcək və buna görə təcrübədə, məntiqi qiymətlərlə işləyərkən,
JavaScript proqramlaşdırma Java-ya nisbətdə C proqramlaşdırma dilinə daha oxşardır.

[←5]
C və C++ proqramçılarının nəzərinə çatdırmaq istəyirik ki, JavaScript-də null qiyməti C, C++ və digər
proqramlaşdırma fərqli olaraq null qiyməti 0 ədədi deyil. Null qiyməti müəyyən şəraitdə özünü 0 ədədi
kimi göstərsə də, heç bir zaman bu qiymətlər bir-birinə ekvivalent deyil!

[←6]
Bu bölmə kifayət qədər mürəkkəb materiala malikdir və bölmə ilə ilk tanışlıq məqsədilə bəzi
məlumatları ixtisar edə bilərsiniz.

[←7]
Ancaq bu halda sətir qiymətlərində eval() metodundan istifadə etmək lazımdır.

[←8]
Bu bölmə kifayət qədər mürəkkəb material özündə saxlayır və ilk dəfə tanış olma zamanı bu bölməni
ixtisara olar.

[←9]
C-də işləməyi bacaran və ümumilikdə bu proqramlaşdırma dilinin göstəricilər konsepsiyası ilə tanış olan
proqramçılar, bu kontekstdə istinadların əsas məğzini anlamalıdır. Bununla belə qeyd etmək lazımdır,
JavaScript göstəricilər ilə işi dəstəkləmir.

[←10]
Bu mürəkkəb predmetdir və kitabdakı digər fəsillərlə əlaqəli olduğu üçün tam mükəmməl qavranılması
tələb olunur. Təzə başlayanlar fəsilin ilk iki bölməsi istisna olmaqla, digər bölmələri ixtisara salıb, 5, 6,
7-ci fəsillərə tanış olduqdan sonra fəsilin qalan bölmələrinə davam edə bilərlər.

[←11]
Əgər bu etməməksə, onda dəyişən gizli özlərinə JavaScript İnterpretatoru tərəfindən elan ediləcək.

[←12]
Bu sadələşməyə, JavaScript-in fak�ki reallaşdırmasının təsviri kimi baxmağa lüzum yoxdur.

[←13]
Bu mövzu sizə maraqsız gəldisə, onu ix�sara sala bilərsiniz.

[←14]
Burada “zəncir” sözü “silsilə” söz ilə də əvəz edilə bilər. (t.r)

[←15]
JavaScript 1.0 və 1.1-də, əgər sol operandın hesablanması nəticəsində false qiyməti alınarsa, &&
operatoru sol operandın dəyişdirililməmiş qiymətini qaytarır.

[←16]
JavaScript 1.0 və 1.1-də, əgər sol operand true dəyişdirilə bilirsə, operator true qiymətini qaytarır,
əks təqdirdə operandın dəyişdirilməmiş qiymətini qaytarır.

[←17]
C++ proqramlaşdırma dili ilə tanış olan şəxslərin, nəzərinə çatdıraq ki, JavaScript-dəki delete
operatoru C++-dakı delete operatorundan tamamilə fərqlənir. JavaScript-də yaddaşın boşalması
tullantı toplayıcısı tərəfindən avtomatik yerinə yetirilir və yaddaşın açıq boşalması barədə narahat
olmağa lüzum yoxdur. Buna görə də, C++ stilində qalıqsız obyektləri silən delete operatoruna ehtiyac
yoxdur.

[←18]
C, C++ və Java-dakı switch təlimatı JavaScript-dəki switch təlimatından əhəmiyyətli dərəcədə
fərqlənir. Bu dillərində case ifadələri sabitlər olmalıdır. Bu ifadələrin hesablanması kompilyasiya
mərhələsində yerinə yetirilir və case ifadələri hamısı eyni tipdə - integer və ya başqa ədəd tipində
olmalıdır. Bu isə o deməkdir ki, JavaScript-də switch təlimatı C, C++ və Java-ya daha az effektivdir.
Bu dillərdə case ifadələri JavaScript-dəki icra zamanı deyil, kompilyasiya mərhələsində hesablanan
sabitlərdən təşkil olunur. Bundan başqa, bir halda ki, C, C++ və Java-da case ifadələri ədəd tipində
olur, onda switch təlimatı yüksək təsirli cədvəllər arasında keçidlər zamanı çox effektiv işləyəcək.

[←19]
continue təlimatının müzakirəsi zamanı görəcəyik ki, while dövrü for dövrünə heç bir halda
ekvivalent deyil.

[←20]
JavaScript-in müxtəlif reallaşdırmaları funksiyaların standarta uyğun təyin edilməsi tələblərinə
laqeyddir. Məsələn,

Netscape JavaScript 1.5 reallaşdırmaları if təlimatlarının daxilində "şərti olaraq funksiyaların təyin
edilməsinə"

imkan verir.

[←21]
Bu bölmənı hə�a OYP konsepsiya ilə tanış olmayanların belə oxuması tövsiyə edilir.

[←22]
Java və C++-da bu termin "sahə" adlanmasına baxmayaraq, burada biz onları xüsusiyyə� adlandıracağıq,
çünki, JavaScript-obyektlərində belə terminologiya qəbul edilmişdir

[←23]
Rhino-nun (Java dilində yazılmış JavaScript interpretatoru) 1.6r1 və bundan əvvəlki versiyalarında
constructor xüsusiyyətinin nizamlanmasını yerinə yetirən proqram kodunda səhv barədə məlumatlar
bildirilir. Nəticədə PositionedRectangle sinifinin nüsxələri Rectangle()-konstruktoruna
istinad edən constructor xüsusiyyətinin qiymətinə varis olur. Praktikada bu səhv demək olar ki
görünmür, çünki xüsusiyyətlər düzgün varis olunur və instanceof operatoru
PositionedRectangle və Rectangle siniflərinin nüsxələrini düzgün ayırd edir.

[←24]
"Kobud �p təyini" termini Ruby proqramlaşdırma dilindən götürülmüşdür. Terminin əsl adı allomorfizmdir.

	1.1. JavaScript nədir
	1.2. JavaScript kliyenti
	1.3. JavaScript-in başqa sahələrdə istifadəsi
	1.4. JavaScript öyrənilməsi
	Leksik struktur
	2.1. Simvol yığımı
	2.2. Registrə həssaslıq
	2.3. Simvol-ayırıcılar və sətir keçidləri
	2.4. Vacib olmayan nöqtəli vergüllər
	2.5. Şərhlər
	2.6. Literallar
	2.7. İdentifikatorlar
	2.8. Ehtiyata saxlanılan sözlər
	3. Məlumat tipləri və qiymətlər
	3.1. Ədədlər
	3.2. Sətirlər
	3.3. Məntiqi qiymətlər
	3.4. Funksiyalar
	3.5. Obyektlər
	3.6. Massivlər
	3.7. null qiyməti
	3.8. undefined qiyməti
	3.9. Date obyekti
	3.10. Requlyar ifadələr
	3.11. Error obyektləri
	3.12. Tiplərin dəyişikliyi
	3.13. Elementarlar məlumat tipləri üçün obyekt-üzlüklər
	3.14. Obyektlərin elementar tiplərdə olan qiymətlərə dəyişikliyi
	3.15. Qiymət və ya istinad üzrə
	Fəsil 4. Dəyişənlər
	4.1. Dəyişənlərin tipləşdirməsi
	4.2. Dəyişənlərin elan edilməsi
	4.3. Dəyişənin görünmə sahəsi
	4.4. Elementar və sitat tipləri
	4.5. Tullantılar dəsti
	4.6. Xüsusiyyət rolunda olan dəyişənlər
	5. İfadələr və operatorlar
	5.1. İfadələr
	5.2. Operatorların icmalı
	5.3. Hesab operatorları
	5.4. Bərabərlik operatorları
	5.5. Əlaqə operatorları
	5.6. Sətir operatorları
	5.7. Məntiqi operatorlar
	5.8. Bit-təyinatlı operatorlar
	5.9. Mənimsəmə operatorları
	5.10. Digər operatorlar
	6.1. Təlimat – ifadə
	6.2. Tərkib təlimatlar
	6.3. if təlimatı
	6.4. else if təlimatı
	6.5. switch təlimatı
	6.6. while təlimatı
	6.7. do/while dövrü
	6.8. for təlimatı
	6.9. for/in təlimatı
	6.10. Nişanlar
	6.11. break təlimatı
	6.12. continue təlimatı
	6.13. var təlimatı
	6.14. function təlimatı
	6.15. return təlimatı
	6.16. throw təlimatı
	6.17. try/catch/finally təlimatı
	6.18.with təlimatı
	6.19. Boş təlimat
	Fəsil 7. Obyektlər
	7.1. Obyektlərin yaradılması
	7.2. Obyektlərin xüsusiyyətləri
	7.3. Obyektler assosiativ massivlər qismində
	7.4. Universal Object sinifinin xüsusiyyətləri və metodları
	7.5. Massivlər
	7.6. Massivin elementlərinin oxunması və yazılması
	7.7 Massiv metodları
	Fəsil 8. Funksiyalar
	8.1. Funksiyaların təyini və çağrılması
	8.2. Funksiyaların arqumentləri
	8.3. Məlumat qismində funksiyalar
	8.4. Metodlar qismində funksiyalar
	8.5. Funksiya-konstruktoru
	8.6. Funksiyaların xüsusiyyətləri və metodları
	8.7. Funksiyaların praktik nümunələri
	8.8. Funksiyaların və qapanmanın görünmə sahəsi
	8.9. Function() konstruktoru
	Fəsil 9. Siniflər, konstruktorlar və prototiplər
	9.1. Konstruklar
	9.2. Prototiplər və varislik
	9.3. Obyekt yönümlü proqramlaşdırma
	9.4. Object sinifinin ümumi metodları
	9.4.3. Müqayisə metodları
	9.5. Üst və altsiniflər
	9.6. Varislik olmadan genişlənmə
	9.7. Obyektin tipinin təyini

